C I took the quiz I’m pretty sure its c
The relation you have shown is not a function.
In order to be a function, a relation's domain must be continuous in that no x-value is not repeated in any of the points. Since the first two points of the relation are (5,1) and (5,3), you can see that they have the same x-value, meaning that this is not a function.
One quick way you could test this is to quickly sketch a graph and use the vertical line test to see if the relation in question is a function. If it cross the vertical line once in all places, it is a function - if it crosses the vertical line more than once in any place, it is not a function.
<span>First we have to find the sum and the difference of those polynomials- The sum is: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) + ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5 - 2 x^3y^4 - 7xy^3 - 8 x^5y + 2 x^3y^4 + xy^3 = - 5 x^5y - 6 xy^3. And the difference: ( 3 x^5y - 2 x^3y^4 - 7 xy^3 ) - ( - 8 x^5y + 2 x^3y^4 + xy^3 ) = 3 x^5y - 2 x^3y^4 - 7 xy^3 + 8 xy^5 - 2 x^3y^4 - xy^3 = 11 xy^5 - 4 x^3y^4 - 8xy^3. The highest exponent in both polynomials is 5. Answer: The degree of the polynomials is 5.</span>
Given =
Two similar pyramid have base area of 12.2 cm² and 16 cm².
surface area of the larger pyramid = 56 cm²
find out the surface area of the smaller pyramid
To proof =
Let us assume that the surface area of the smaller pyramid be x.
as surface area of the larger pyramid is 56 cm²
Two similar pyramid have base area of 12.2 cm² and 16 cm².
by using ratio and proportion
we have
ratio of the base area of the pyramids : ratio of the surface area of the pyramids

x = 12.2 ×56×
by solvingthe above terms
we get
x =42.7cm²
Hence the surface area of the smaller pyramid be 42.7cm²
Hence proved
Answer:
1.2
Step-by-step explanation: