Answer:
A. C₃H₄N
Explanation:
- Firstly, we need to calculate the no. of moles of C, H, and N using the relation:
<em>no. of moles = mass/molar mass.</em>
<em></em>
∴ no. of moles of C = mass/molar mass = (90.0 g)/(12.0 g/mol) = 7.5 mol.
∴ no. of moles of H = mass/molar mass = (11.0 g)/(1.0 g/mol) = 11.0 mol.
∴ no. of moles of N = mass/molar mass = (35.0 g)/(14.0 g/mol) = 2.5 mol.
- We should get the mole ratio of each atom by dividing by the lowest no. of moles (2.5 mol of N).
∴ the mole ratio of C: H: N = (7.5 mol/2.5 mol): (11.0 mol/2.5 mol): (2.5 mol/2.5 mol) = (3: 4.4: 1) ≅ (3: 4: 1).
- So, the empirical formula is: A. C₃H₄N.
When a neutral hydrogen atom loses an electron, a positively-charged particle should remain.
The half-life of polonium-210, given that it decays from 98.3 micrograms to 12.3 micrograms in 414 days is 138 days
<h3>How to determine the number of half-lives </h3>
- Original amount (N₀) = 98.3 micrograms
- Amount remaining (N) = 12.3 micrograms
- Number of half-lives (n) =?
2ⁿ = N₀ / N
2ⁿ = 98.3 / 12.3
2ⁿ = 8
2ⁿ = 2³
n = 3
<h3>How to determine the half life </h3>
- Number of half-lives (n) = 3
- Time (t) = 414 days
- Half-life (t½) = ?
t½ = t / n
t½ = 414 / 3
t½ = 138 days
Learn more about half life:
brainly.com/question/26374513
#SPJ1
<em>Answer:</em>
- 0.052301 km have 5 significant figure
- 400 cm have 1 significant figure
- 50.0 m have 3 significant figure
- 4500.01 ml have 6 significant figure
<em>Explanation:</em>
According to rules of significant figure
0.052301 km have 5 significant figure:
- Zero to the left of the first non zero digit not significant.
- Zero between the non zero digits are significant.
<em>400 cm have 1 significant figure:</em>
- Trailing zeros are not significant in numbers without decimal points.
<em>50.0 m have 3 significant figure:</em>
- Trailing zeros are significant in numbers when there is decimal points.
<em>4500.01 ml have 6 significant figure:</em>
- Zero between the non zero digits are significant.
Answer:
Like your refrigerator, heat pumps use electricity to move heat from a cool space to a warm space, making the cool space cooler and the warm space warmer. ... The most common type of heat pump is the air-source heat pump, which transfers heat between your house and the outside air.
Explanation: