Multiplying the subscripts within the empirical formula by this number gives you the molecular formula H2O2.
The net amount of energy produced can be obtained from a table of enthalpy change of formation, available online.
The enthalpy change of formation indicate how much energy the 1 mole of the product (H2O) has relative to the elemental reactants (H2 and O2). In other words, the "lost" energy equals the heat/energy released.
For water (H2O), this value is -285.8 if the final product is a liquid under standard conditions, and -241.82 if the product is in gas form which contains some energy that could be further released. This means that if the final product (H2O) is in liquid form, energy released is 285.8 kJ/mol.
Since water is in liquid form under standard conditions, the first value (285.8 kJ/mol) is generally appropriate.
Answer:

Explanation:
There are two heat transfers involved: the heat lost by the metal block and the heat gained by the water.
According to the Law of Conservation of Energy, energy can neither be destroyed nor created, so the sum of these terms must be zero.
Let the metal be Component 1 and the water be Component 2.
Data:
For the metal:

For the water:




Break down in to tiny prices as the water hit the tree