Well a question to ask would be if the mass of the material has changed significantly as that would determine that the substance is radioactive or if there have been any high readings found by a Geiger meter in certain period of time
hope that helps
Cl2(g) -------> Cl-(aq) + ClO-(aq)
2e- + Cl2(g) -------> 2Cl-(aq) [reduction]
4OH-(aq) + Cl2(g) -----------> 2ClO-(aq) + 2H2O(l) + 2e- [oxidation]
______________________________________...
2OH-(aq) + Cl2(g) --------> Cl-(aq) + ClO-(aq) + H2O(l)
Answer:

Explanation:
From the question, we have been asked to find the molarity of FeCl2 having a volume of 450 mL,
We have been provided with 225 g which is proportional to 1.8 moles.
We know that molarity of any solution should be in mol/L.
1 mole contained in 1 L means it has a molarity of 1 mol/L
Let's convert 450 mL to Litres which is,

= 0.450 L
Thus,
1 mole is contained in 1L
x moles are contained in 0.450 L
Hence,
x mole/molarity = {1 mole x 1 L}/{0.450 L}
= 4 mol/L
Therefore 4 mol/L is the molar concentration.
Answer:
Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen, and is a fuming red-brown liquid at room temperature that evaporates readily to form a similarly colored gas.