Answer: The statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Explanation:
Kinetic energy is the energy obtained due to the motion of an object or substance.

where,
T = temperature
This means that kinetic energy is directly proportional to temperature.
So, when heat is provided to container A then its molecules will start to move rapidly from one place to another which will cause more collisions between the atoms.
Hence, average kinetic energy will be more in container A.
Whereas container B is placed at room temperature which is low than that in container A. So, molecules in container B will move at almost same speed and therefore, specific collisions will be there. So, average kinetic energy in container B will be less than that in container A.
Thus, we can conclude that the statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Answer:
The answer is C: has at least three oxidation states.
Explanation:
you're welcome
Products. I’m not 100% sure because I don’t fully understand what your asking but if you are talking as in chemical reactions, the answer is a product.
Answer:
Mass = 135.66 ×10⁻²¹ g
Explanation:
Given data:
Number of molecules of CuSO₄= 5.119×10²
Mass of CuSO₄= ?
Solution:
The given problem will solve by using Avogadro number.
1 mole contain 6.022×10²³ molecules
5.119×10² molecules ×1 mol / 6.022×10²³ molecules
0.85×10⁻²¹ mol
Mass in grams:
Mass = number of moles × molar mass
Mass = 0.85×10⁻²¹ mol × 159.6 g/mol
Mass = 135.66 ×10⁻²¹ g
I think it would the hydrosphere