<span>Ionic compounds
Hope this helps! :)</span>
The amine here is the easiest to spot since there’s only one structure that has a nitrogen atom, which would be the first (the first structure is a primary amine).
The distinguishing functional group of an alcohol is the hydroxy group (—OH). Both the second and third structures have an —OH group, but the —OH in the third structure is part of a carboxyl group (—COOH or —C(=O)OH). A carboxyl group takes priority over hydroxy group. Thus, the second structure would be an alcohol and the third structure would be a carboxylic acid.
That leaves us with the fourth structure, a hydrocarbon with a halogen substitutent, or, aptly named, a halocarbon.
Answer:
Explanation:The scientific method is an empirical method of acquiring knowledge that has characterized the development of science since at least the 17th century. It involves careful observation, applying rigorous skepticism about what is observed, given that cognitive assumptions can distort how one interprets the observation. It involves formulating hypotheses, via induction, based on such observations; experimental and measurement-based testing of deductions drawn from the hypotheses; and refinement (or elimination) of the hypotheses based on the experimental findings. These are principles of the scientific method, as distinguished from a definitive series of steps applicable to all scientific enterprises.[1][2][3]
Though diverse models for the scientific method are available, there is in general a continuous process that includes observations about the natural world. People are naturally inquisitive, so they often come up with questions about things they see or hear, and they often develop ideas or hypotheses about why things are the way they are. The best hypotheses lead to predictions that can be tested in various ways. The most conclusive testing of hypotheses comes from reasoning based on carefully controlled experimental data. Depending on how well additional tests match the predictions, the original hypothesis may require refinement, alteration, expansion or even rejection. If a particular hypothesis becomes very well supported, a general theory may be develope
The molecule BH3 is trigonal planar, with B in the center and H in the three vertices. Ther are no free electrons. All the valence electrons are paired in and forming bonds.
There are four kind of intermolecular attractions: ionic, hydrogen bonds, polar and dispersion forces.
B and H have very similar electronegativities, Boron's electronegativity is 2.0 and Hydrogen's electronegativity is 2.0.
The basis of ionic compounds are ions and the basis of polar compounds are dipoles.
The very similar electronegativities means that B and H will not form either ions or dipoles. So, that discards the possibility of finding ionic or polar interactions.
Regarding, hydrogen bonds, that only happens when hydrogen bonds to O, N or F atoms. This is not the case, so you are sure that there are not hydrogen bonds.
When this is the case, the only intermolecular force is dispersion interaction, which present in all molecules.
Then, the answer is dispersion interaction.