Answer
given,
wavelength = λ = 18.7 cm
= 0.187 m
amplitude , A = 2.34 cm
v = 0.38 m/s
A) angular frequency = ?
angular frequency ,
ω = 2π f
ω = 2π x 2.03
ω = 12.75 rad/s
B) the wave number ,
C)
as the wave is propagating in -x direction, the sign is positive between x and t
y ( x ,t) = A sin(k x - ω t)
y ( x ,t) = 2.34 x sin(33.59 x - 12.75 t)
Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.
Answer:
Mass of the climber = 69.38 kg
Explanation:
Change in length

Load, P = m x 9.81 = 9.81m
Young's modulus, Y = 0.37 x 10¹⁰ N/m²
Area

Length, L = 15 m
ΔL = 5.1 cm = 0.051 m
Substituting
Mass of the climber = 69.38 kg

where:
F - force
m - mass
a - acceleration
We transform this formula to get a:

Answer:
725.2 N
Explanation:
Since it is not stated the scale, the person or both accelerated or experience weightlessness, the net force acting on the bathroom scale is the weight of the person acting downward as the person stands on the scale .
Weight = mass of a body × acceleration due to gravity
= 74 kg × 9.8 m/s²
= 725.2 N