1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
3 years ago
6

Given the following diagram, find the missing measure.

Mathematics
2 answers:
maks197457 [2]3 years ago
8 0

Answer:

The correct solution is M = 110

deff fn [24]3 years ago
4 0

Answer:

m3 = 110°

Step-by-step explanation:

m1 = 180° - m4 ( sum of angles in a straight angle )

m1 = 180° - 150° = 30°

m3 = 180° - (m2 + m1) ← sum of angles in a triangle

m3 = 180° - (40 + 30 )° = 180° - 70° = 110°


You might be interested in
How much wood could a woodpecker peck if a woodpecker could peck wood? (this is a legitimate question on my homework)​
Nimfa-mama [501]
A woodpecker can chuck wood
8 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Explain how the graph of the function f(x)=8/x
Nitella [24]

Answer:

By putting the coordinates  on the graph I think

Step-by-step explanation:

8 0
3 years ago
Ella bought some key chains and spent a total of $32. Each key chain cost the same whole-dollar amount. She bought between 6 and
MrRa [10]
Ella bought 8 keychains. She spent 4 dollars on each KeyChain. Hope this helps
5 0
3 years ago
For which values of x is f(x) &gt; g(x)
sveticcg [70]

Answer:

Step-by-step explanation:

C ?

5 0
3 years ago
Other questions:
  • What is 49 in exponential form
    12·1 answer
  • Plz help me I don’t understand it’s hard
    10·1 answer
  • Solve 1/2x - 12 = 12
    13·1 answer
  • Please help 60 points for a 4 part question
    8·2 answers
  • A family of six consists of four people older than 12 and two people 12 or under. Tickets into an amusement park are $57.95 for
    9·1 answer
  • Which is equivalent to 3/125
    13·1 answer
  • Tora took a short trip of 320 miles. He stopped to have lunch after he had driven 120 miles. Write the fraction of the trip he h
    12·1 answer
  • 7th Grade: Daily Tre Seventh Grade Wee.
    14·2 answers
  • Find the equation of the line.<br> Use exact numbers.<br> y =_x+7
    7·1 answer
  • Analyze the graph below to identify the key features of the logarithmic function.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!