Answer:
In the - j direction, that is negative of the y-axis
Explanation:
As typed in the question, the position of the object is given by the expression in three component ( i, j, k) form:
r (t) = 5 i - (t + 1 ) j + t^3 k
and since the velocity is the derivative of position with respect to time, by doing the derivative of this expression we get:
v(t) = 0 i - 1 j +3 t^2 k
which for the initial velocity requested (that is at time zero) we have:
v(t) = 0 i - 1 j +3 (0)^2 k = = 1 j
Then the direction of the initial velocity is entirely in the direction of the j versor, that is pointing to the negative of the y-axis.
So, C = kE°A/d
putting the values,
C
= 3.8 × 8.85×10^(-12) × 3.14×1.5×1.5 × 10^(-6)/0.43 × 10^(-3)
so, 1.02 × 10^(-13)
so the most appropriate answer is 2 ...that is
1.4 × 10^(-13) ....answer !!
By the definition of wavelength, the answer is the letter D, the wavelength would decrease.
We can see in the diagram a wave motion.
A wave has some characteristics:
- Has an amplitude, the distance from 0 to the crest (highest point in the y-direction, point (3) in the figure) it would see in the figure as (2)
- Has wavelength, the distance between the crests.
- Has a trough, the lowest point in the y-direction.
Now, if we increase the distance of the crests, by the definition shown above, we will increase the wavelength.
Therefore, the answer is letter D, the wavelength would increase.
You can learn more about wave motion here:
brainly.com/question/22763521
Magic, Nah im just kidding. A battery has two parts, the anode and the cathode. Which anode is positive and cathode is negative, which they are connected to the electrolyte. Once they are connected to a device they once start working from separate ends. Which is the flow of energy