1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivan
3 years ago
10

Two astronauts (each with mass 100 kg) are drifting together through space. They are connected to each other by a rope 5 m in le

ngth, and are moving in circles about a point halfway between them (i.e. their center of mass). Each astronaut has a speed of 2 m/s. They then pull on the rope, shortening the distance between them to 1 m. You can simplify the system by treating the astronauts as particles, and assuming the rope has negligible mass. Then solve the following; set up steps 3-7 separately for each part (you can use the same picture for all parts). a. What are the initial angular momentum and rotational energy of the system? b. What are the final angular momentum and rotational energy of the system? (hint: what is the new velocity of each astronaut?). C. How much work was done by the astronauts in shortening the rope?
Physics
1 answer:
Nana76 [90]3 years ago
5 0

Answer:

1000 kgm²/s, 400 J

1000 kgm²/s, 1000 J

600 J

Explanation:

m = Mass of astronauts = 100 kg

d = Diameter

r = Radius = \frac{d}{2}

v = Velocity of astronauts = 2 m/s

Angular momentum of the system is given by

L=mvr+mvr\\\Rightarrow L=2mvr\\\Rightarrow L=2\times 100\times 2\times 2.5\\\Rightarrow L=1000\ kgm^2/s

The angular momentum of the system is 1000 kgm²/s

Rotational energy is given by

K=I\omega^2\\\Rightarrow K=\frac{1}{2}(mr^2)\left(\frac{v}{r}\right)^2\\\Rightarrow K=mv^2\\\Rightarrow K=100\times 2^2\\\Rightarrow K=400\ J

The rotational energy of the system is 400 J

There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

L_i=L_f\\\Rightarrow 2mv_ir_i=2mv_fr_f\\\Rightarrow v_f=\frac{v_ir_i}{r_f}\\\Rightarrow v_f=\frac{2\times 2.5}{0.5}\\\Rightarrow v_f=10\ m/s

Energy

E_2=mv_f^2\\\Rightarrow E_2=100\times 10\\\Rightarrow E_2=1000\ J

The new energy will be 1000 J

Work done will be the change in the kinetic energy

W=E_2-E\\\Rightarrow W=1000-400\\\Rightarrow W=600\ J

The work done is 600 J

You might be interested in
If electrical current is moving through a horizontal wire toward your face, what direction is the induced magnetic field?
adoni [48]

Answer:(b)

Explanation:

Given

Electric current flowing through the horizontal wire towards the observer's face.

The direction of the magnetic field is given by the right-hand thumb rule, i.e. place the thumb in the direction of current and the wrapping of fingers will give the direction of the magnetic field

the direction of the magnetic field will be counterclockwise as observed by an observer.

4 0
3 years ago
What statement best illustrates vibrational motion?
kramer
C. a cello playing music at the concert
7 0
3 years ago
Read 2 more answers
Find the kenetic energy of a car of mass 700kg racing with a velocity of 10m/s
fiasKO [112]

Answer:

35000 KJ

Explanation:

The equation for the kinetic energy is given by the formula :

E_{k} = \frac{1}{2} mv^{2}

E_{k} = \frac{1}{2} (700)(10)^{2}

E_{k} = \frac{1}{2} (700)(100)

E_{k} = (350)(100)  OR E_{k} = \frac{1}{2} (70000)

E_{k} = 35000

Units will be kilojoules since the units of mass was kilograms .

Our final answer is 35000 KJ

Hope this helped and have a good day

5 0
2 years ago
To teach you how to find the parameters characterizing an object in a circular orbit around a much heavier body like the earth.
Karolina [17]

Answer:

a)  T² = (\frac{4\pi ^2}{GM})  r³

b) veloicity the dependency is the inverse of the root of the distance

kinetic energy  depends on the inverse of the distance

potential energy dependency is the inverse of distance

angular momentum depends directly on the root of the distance

Explanation:

1) for this exercise we will use Newton's second law

            F = ma

in this case the acceleration is centripetal

            a = v² / r

the linear and angular variable are related

           v = w r

we substitute

           a = w² r

force is the universal force of attraction

           F = G \frac{m M}{r^2}

we substitute

         G \frac{m M}{r^2} = m w^2 r

         w² = \frac{GM}{r^3}

angular velocity is related to frequency and period

         w = 2π f = 2π / T

we substitute

            ( \frac{2\pi }{T} ) = \frac{GM}{r^3}

the final equation is

             T² = ()  r³

b) the speed of the orbit can be found

           v = w r

            v = \sqrt{\frac{GM}{r^3} } \ r

            v = \sqrt{\frac{GM}{r} }

in this case the dependency is the inverse of the root of the distance

Kinetic energy

           K = ½ M v²

           K = ½ M GM / r

           K = ½ GM² 1 / r

the kinetic energy depends on the inverse of the distance

Potential energy

          U =

          U = -G mM / r

dependency is the inverse of distance

Angular momentum

          L = r x p

for a circular orbit

           L = r p = r Mv

           L =

         L =

The angular momentum depends directly on the root of the distance

8 0
3 years ago
Look at the circuit diagram. Which of these components is part of the circuit?
tangare [24]
I think the answer is c AC power source
Hope this help you?
4 0
3 years ago
Other questions:
  • What happens to the car if it is traveling in a circular path suddenly encounters ice?
    5·2 answers
  • What is 100N in kilograms
    13·2 answers
  • A 0.22 kg air track glider moving at 0.60 m/s a collides elastically into a 0.44 kg glider at rest. After collision the 0.22 kg
    14·1 answer
  • Which statement describes a resistor in a circuit?
    15·2 answers
  • What force causes something to stop and slow down
    13·1 answer
  • Which of the following items has the least inertia while at rest?
    12·2 answers
  • 24. A car is travelling along an expressway at 90 km/h. The driver spots a stalled car and some traffic congestion on the road a
    8·1 answer
  • PLZZZZZZ HELP 50 POINTS Directions
    6·1 answer
  • Which has more inertia - a 2,750 gram object or a 2,500 gram object?
    11·2 answers
  • A 2 kg object has a specific heat capacity of 1,700 J/(kg \cdot⋅oC)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!