The value of n, the Hill coefficient, for hemoglobin is about 2 to 3 times as great as the value for myoglobin.
Hill Equation
The two closely related equations that help to explain the binding of macromolecules to ligands are called the Hill equation. It helps to quantify the interaction between various ligand binding sites.
Hill coefficient
It is used to describe the cooperativity of ligand binding. It can be positive and negative depending on the value of the Hill coefficient. If the value of the Hill coefficient is more than one then it exhibits positively cooperative binding and if it is less than one then it exhibits negatively cooperative binding. Then there is the noncooperative binding where the Hill coefficient value is one. As for the hemoglobin and myoglobin, the values are,
- Hill coefficient of hemoglobin is 2.7 - 3.
- Hill coefficient of myoglobin is 1.0.
Thus hemoglobin is positively cooperative and myoglobin exhibits noncooperative binding.
Learn more about hemoglobin:
brainly.com/question/15011428
#SPJ4
I think it is A . eubacteria
。☆✼★ ━━━━━━━━━━━━━━ ☾
The correct option would be B. results in the formation of a compound
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━ ☾
The answer is <span>Disaccharides are different in structure because they are not made up of the same monosaccharides, and this gives them different properties.
Both sucrose and lactose are disaccharides, however, they are made up different monosaccharides:
Disaccharide = monosaccharide + monosaccharide
Sucrose = glucose + fructose
Lactose = glucose + </span>galactose
Since they have different structures, their characteristics and behaviour in chemical reactions must differ, too.
Structurally, DNA and RNA are nearly identical. As mentioned earlier, however, there are three fundamental differences that account for the very different functions of the two molecules. RNA has a ribose sugar instead of a deoxyribose sugar like DNA. RNA nucleotides have a uracil base instead of thymine.