1) Chemical reaction:
2(CH₃COO)₃Fe + 3MgCrO₄ → Fe₂(CrO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgCrO₄) = 10,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol.
n(MgCrO₄) = m(MgCrO₄) ÷ M(MgCrO₄).
n(MgCrO₄) = 10 g ÷ 140,3 g/mol.
n(MgCrO₄) = 0,071 mol; limiting reagens.
From chemical reaction: n(MgCrO₄) : n((CH₃COO)₂Mg) = 3 : 3.
n((CH₃COO)₂Mg) = 0,071 mol.
m((CH₃COO)₂Mg) = 0,071 mol · 142,4 g/mol.
n((CH₃COO)₂Mg) = 10,11 g.
2) Chemical reaction:
2(CH₃COO)₃Fe + 3MgSO₄ → Fe₂(SO₄)₃ + 3(CH₃COO)₂Mg.
m((CH₃COO)₃Fe) = 15,0 g.
m(MgSO₄) = 15,0 g.
n((CH₃COO)₃Fe) = m((CH₃COO)₃Fe) ÷ M((CH₃COO)₃Fe).
n((CH₃COO)₃Fe) = 15 g ÷ 233 g/mol.
n((CH₃COO)₃Fe) = 0,064 mol; limiting ragens.
n(MgSO₄) = m(MgSO₄) ÷ M(MgSO₄).
n(MgSO₄) = 15 g ÷ 120,36 g/mol.
n(MgSO₄) = 0,125 mol; limiting reagens.
From chemical reaction: n(CH₃COO)₃Fe) : n((CH₃COO)₂Mg) = 2 : 3.
n((CH₃COO)₂Mg) = 0,064 mol · 3/2.
n((CH₃COO)₂Mg) = 0,096 mol.
m((CH₃COO)₂Mg) = 0,096 mol · 142,4 g/mol.
m((CH₃COO)₂Mg) = 13,7 g.
The viscosity of a liquid is a measure of its resistance to flow. Water, gasoline, and other liquids that flow freely have a low viscosity. ... The molecules within a liquid are surrounded by other molecules and are attracted equally in all directions by the cohesive forces within the liquid.
Mole = Mass / Molar mass
6.12 moles = Mass / 74.92 g/mol
Mass = 6.12 moles x 74.92 g/mol
Mass = 458.51g
Answer:
The wavelength of the given electromagnetic radiation is 3.25 m.
Explanation:
We know that,
Frequency (f) = c / λ;
where,
c - speed of light = 
λ - wavelength of the radiation.
Given,
f =
,
From the above formula,
λ =
λ = 
λ = 3.25m;
Therefore,
Wavelength of the given radiation = 3.25 m
I believe the correct answer from the choices listed above is the third option. It would be chromium (Cr) that is a transition metal. The 38 elements in groups 3 through 12 of the periodic table are called "transition metals<span>". Hope this answers the question. Have a nice day.</span>