Answer:
<em>The rubber band will be stretched 0.02 m.</em>
<em>The work done in stretching is 0.11 J.</em>
Explanation:
Force 1 = 44 N
extension of rubber band = 0.080 m
Force 2 = 11 N
extension = ?
According to Hooke's Law, force applied is proportional to the extension provided elastic limit is not extended.
F = ke
where k = constant of elasticity
e = extension of the material
F = force applied.
For the first case,
44 = 0.080K
K = 44/0.080 = 550 N/m
For the second situation involving the same rubber band
Force = 11 N
e = 550 N/m
11 = 550e
extension e = 11/550 = <em>0.02 m</em>
<em>The work done to stretch the rubber band this far is equal to the potential energy stored within the rubber due to the stretch</em>. This is in line with energy conservation.
potential energy stored = 
==>
= <em>0.11 J</em>
Answer:
15 protons and 18 electrons
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Element Number
- Neutral Atoms
- Ions
Explanation:
We are given the element P. P is 15 on the Periodic Table, meaning it has 15 protons and 15 electrons (all elements are in neutral form).
P³⁻ ion means the element now has a negative charge of 3. We know protons have a positive charge and electrons have a negative charge. 3- means we will have more electrons than protons.
Therefore, P³⁻ would have 15 protons and <em>18</em> electrons:
15 (+) + 18 (-) = 3 (-)
Answer:
1) t = 3.45 s, 2) x = 138 m, 3) v_{y} = -33.81 m /s, 4) v = 52.37 m / s
,
5) θ = -40.2º
Explanation:
This is a projectile exercise, as they indicate that the projectile rolls down the cliff, it goes with a horizontal speed when leaving the cliff, therefore the speed is v₀ₓ = 40 m / s.
1) Let's calculate the time that Taardaen reaches the bottom, we place the reference system at the bottom of the cliff
y = y₀ +
t - ½ g t²
When leaving the cliff the speed is horizontal v_{oy}= 0 and at the bottom of the cliff y = 0
0 = y₀ - ½ g t2
t = √ 2y₀ / g
t = √ (2 60 / 9.8)
t = 3.45 s
2) The horizontal distance traveled
x = v₀ₓ t
x = 40 3.45
x = 138 m
3) The vertical velocity at the point of impact
v_{y} = I go - g t
v_{y} = 0 - 9.8 3.45
v_{y} = -33.81 m /s
the negative sign indicates that the speed is down
4) the resulting velocity at this point
v = √ (vₓ² + v_{y}²)
v = √ (40² + 33.8²)
v = 52.37 m / s
5) angle of impact
tan θ = v_{y} / vx
θ = tan⁻¹ v_{y} / vx
θ = tan⁻¹ (-33.81 / 40)
θ = -40.2º
6) sin (-40.2) = -0.6455
7) tan (-40.2) = -0.845
8) when the projectile falls down the cliff, the horizontal speed remains constant and the vertical speed increases, therefore the resulting speed has a direction given by the angle that is measured clockwise from the x axis
Answer:
Explanation:
Hi!
In order to obtain the Lagrangian of the system we must first write the Kinetic and Potential Energies. Lets orient our axes such that the axis of the cone coincide with the z axis. In cilindrical coordinates we have
- (1)
But, since the particle is constrained to move on the surface of the cilinder, we have the following relation between r and z:

or:
- (2)
and:
replacing (2) in (1) we obtain:
- (3)
Now the kinetic energy is given as:
- (4)
And the potential energy is given by:

So the Langrangian is given by:

And the equations of motion are:
For θ

For r

Obtained from the Euler-Langrange equations
Here the conserved quantity is given by the first equation of motion, namely:

Which is the magnitude of the angular momentum
Answer:
A time period is denoted by 'T' . It is the time to complete one cycle of vibration. As the frequency of a wave increases, the time period of the wave decreases. The unit for time period is 'seconds
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!