Answer:
According to <em>Newton's first law of motion:</em>
<u>An object in motion tends to remain in motion unless an external force acts upon it.</u>
<u>It stays in motion with the same speed and goes in the same direction.</u>
<u></u>
<em>Hope this helped </em>
<em>:)</em>
Answer:
It is larger than the Sun.
Explanation:
Brainliest pls
:3
Answer:
A) Increases by a factor of 2
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Given that mass, m = 2m
Substituting into the equation, we have;
K.E = ½mv²
K.E = ½*2mv²
Cross-multiplying, we have;
2K.E = 2mv²
Hence, if the mass of an object increases by a factor 2, kinetic energy is increased by a factor of 2.
Answer:
B) Power is the rate at which work is done
Let <em>F</em> be the magnitude of the force applied to the cart, <em>m</em> the mass of the cart, and <em>a</em> the acceleration it undergoes. After time <em>t</em>, the cart accelerates from rest <em>v</em>₀ = 0 to a final velocity <em>v</em>. By Newton's second law, the first push applies an acceleration of
<em>F</em> = <em>m a</em> → <em>a</em> = <em>F </em>/ <em>m</em>
so that the cart's final speed is
<em>v</em> = <em>v</em>₀ + <em>a</em> <em>t</em>
<em>v</em> = (<em>F</em> / <em>m</em>) <em>t</em>
<em />
If we force is halved, so is the accleration:
<em>a</em> = <em>F</em> / <em>m</em> → <em>a</em>/2 = <em>F</em> / (2<em>m</em>)
So, in order to get the cart up to the same speed <em>v</em> as before, you need to double the time interval <em>t</em> to 2<em>t</em>, since that would give
(<em>F</em> / (2<em>m</em>)) (2<em>t</em>) = (<em>F</em> / <em>m</em>) <em>t</em> = <em>v</em>