Answer:
Thus, any projectile that has an initial vertical velocity of 21.2 m/s and lands 10.0 m below its starting altitude spends 3.79 s in the air.The initial vertical velocity is the vertical component of the initial velocity: v 0 y = v 0 sin θ 0 = ( 30.0 m / s ) sin 45 ° = 21.2 m / s .
Ans is <span>I. Flowing groundwater that dissolves rock , such as limestone</span>
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
3.4m/s
Explanation:
Given parameters:
Distance to school = 14.4km
Time taken by Amy = 49min
Time taken by bill = 20min after Amy = 20+49 = 69min
Unknown parameters:
How much faster is Amy's average speed = ?
Solution:
Average speed is the rate of change of total distance with total time taken.
Average speed = 
convert units to meters and seconds
1000m = 1km
60s = 1min
Distance to school = 14.4 x 1000 = 14400m
Time taken by Amy = 49 x 60 = 2940s
Time taken by Bill = 69 x 60 = 4140s
Average speed of Amy =
= 4.9m/s
Average speed of Bill =
= 1.4m/s
Differences in speed = 4.9 - 1.5 = 3.4m/s
Amy was 3.4m/s faster than Bill
learn more:
Average speed brainly.com/question/8893949
#learnwithBrainly