Answer:
Wavelength, 
Explanation:
It is given that,
Speed of radio waves is 
Frequency of radio waves is f = 101,700,000 Hz
We need to find the wavelength of WFNX’s radio waves. The relation between wavelength, frequency and speed of a wave is given by :

is wavelength

So, the wavelength of WFNX’s radio waves is 2.94 m.
Answer:
0.266 m
Explanation:
Assuming the lump of patty is 3 Kg then applying the principal of conservation of linear momentum,
P= mv where p is momentum, m is mass and v is the speed of an object. In this case
where sunscripts p and b represent putty and block respectively, c is common velocity.
Substituting the given values then
3*8=v(15+3)
V=24/18=1.33 m/s
The resultant kinetic energy is transferred to spring hence we apply the law of conservation of energy
where k is spring constant and x is the compression of spring. Substituting the given values then

Answer:
346.70015 m/s
Explanation:
In the x axis speed is

In the y axis

The resultant velocity is given by

The magnitude of the overall velocity of the hamper at the instant it strikes the surface of the ocean is 346.70015 m/s
Answer:
The magnitude of the torque is 263.5 N.
Explanation:
Given that,
Applied force = 31 N
Distance from the axis = 8.5 m
She applies her force perpendicularly to a line drawn from the axis of rotation
So, The angle is 90°
We need to calculate the torque
Using formula of torque

Where, F = force
d = distance
Put the value into the formula


Hence, The magnitude of the torque is 263.5 N.
Kinetic energy means movement. This means that the more something moves, the more kinetic energy it will have! And the faster something moves, the more heat it produces! Altogether, this means that the more Kinetic energy something has, the hotter it will be!
The opposite is also true. The less something moves, it will have less Kinetic energy and the colder it will get.
If you're having trouble understanding this, think of it like how the particles in water move compared to how the particles in ice move. The particles in water are free flowing and can move wherever they want. If they get colder, they won't move as much, and eventually they'll stop flowing around, forming a solid and staying colder than the water will get.