Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Answer:
T₂ = 123.9 N, θ = 66.2º
Explanation:
To solve this exercise we use the law of equilibrium, since the diaphragm does not appear, let's use the adjoint to see the forces in the system.
The tension T1 = 100 N, we create a reference frame centered on the pole
X axis
T₁ₓ -
= 0
T_{2x}= T₁ₓ
Y axis y
T_{1y} + T_{2y} - 200N = 0
T_{2y} = 200 -T_{1y}
let's use trigonometry to find the component of the stresses
sin 60 = T_{1y} / T₁
cos 60 = t₁ₓ / T₁
T_{1y} = T₁ sin 60
T1x = T₁ cos 60
T_{1y}y = 100 sin 60 = 86.6 N
T₁ₓ = 100 cos 60 = 50 N
for voltage 2 it is done in the same way
T_{2y} = T₂ sin θ
T₂ₓ = T₂ cos θ
we substitute
T₂ sin θ= 200 - 86.6 = 113.4
T₂ cos θ = 50 (1)
to solve the system we divide the two equations
tan θ = 113.4 / 50
θ = tan⁻¹ 2,268
θ = 66.2º
we caption in equation 1
T₂ cos 66.2 = 50
T₂ = 50 / cos 66.2
T₂ = 123.9 N
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds) = 4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds) = 645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
(645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
= 1.173 Horsepower. GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh ! Look at #26 ! There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a). 5
b). 750 Joules
c). 800 Joules
d). 93.75%
You're welcome.
And #27 is 0.667 m/s .
Answer:
1) the new power coming from the amplifier is 19.02 W
2) The distance away from the amplifier now is 5.50 m
3) u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther
Explanation:
Lets say that I am at a distance "u" from the TV,
Let I₁ be the corresponding intensity of the sound at my location when sound level is 125dB
SO
S(indB) = 10log (I₁/1₀)
we substitute
125 = 10(I₁/10⁻¹²)
12.5 = log (I₁/10⁻¹²)
10^12.5 = I₁/10^-12
I₁ = 10^12.5 × 10^-12
I₁ = 10^0.5 W/m²
Now I₂ will be intensity of sound when corresponding sound level is 107 dB
107 = 10log(I₂/10⁻²)
10.7 = log(I₂/10⁻¹²)
10^10.7 = I₂ / 10^-12
I₂ = 10^10.7 × 10^-12
I₂ = 10^-1.3 W/m²
Now since we know that
I = P/4πu² ⇒ p = 4πu²I
THEN P₁ = 4πu²I₁ and P₂ =4πu²I₂
Therefore
P₁/P₂ = I₁/I₂
WE substitute
P₂ = P₁(I₂/I₁) = 1200 × ( 10^-1.3 / 10^0.5)
P₂ = 19.02 W
the new power coming from the amplifier is 19.02 W
2)
P₁ = 4πu²I₁
u =√(p₁/4πI₁)
u = √(1200/4π × 10^0.5)
u = 5.50 m
The distance away from the amplifier now is 5.50 m
3)
Let I₃ be the intensity corresponding to required sound level 85 dB
85 = 10log(I₃/10⁻¹²)
8.5 = log (I₃/10⁻¹²)
10^8.5 = I₃ / 10^-12
I₃ = 10^8.5 × 10^-12
I₃ = 10^-3.5 w/m²
Now, I ∝ 1/u²
so I₂/I₃ = u₁²/u²
u₁ = √(I₂/I₃) × u
u₁ = √(10^-1.3 / 10^-3.5) × 5.50
u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther