Answer: The box was moving with a velocity of 0.256m/s when it hit the spring
Explanation: Please see the attachments below
Answer:
The acceleration of the train is 5 m/s².
Explanation:
Given:
let the initial velocity of a train = 5 m/s and
final velocity of a train = 45 m/s
time taken = 8 s
To find:
acceleration: ?
Solution:
We define acceleration as change in velocity per unit time that is the difference between the final velocity and initial velocity divided by time.

On substituting the above values we get the required acceleration

Therefore,the acceleration of the train is 5 m/s².
1. Each plot represents the meters traveled by both the Hare and the Tortoise over a certain period of time (minutes).
2. The Tortoise lines show it lines is steadily increasing over a period of time. So as more time elapses the faster the tortoise becomes it travels more meters. The Tortoise line shows steady acceleration.
3. The Hare in the first 5 minutes had a rapid fast advancement up to 40 meters. But for the 5-20 mins. period the Hare did not move at all. Its speed stayed at the same place. But towards the end 20-25 mins. marks the Hare started moving again. At the end the Hare at first had a rapid acceleration but stopped for a long time then it sped up briefly.
Answer:
1. Fleming's left hand rule
2. It must be projected towards the east
Explanation:
Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.
Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.
Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.