Answer:
The formula for the calculation of the magnetic field inside a solenoid is
B = μo*n*I
where
μo: vacuum permeability
n: turns per meter
I: current
The magnetic field inside de solenoid is constant. In the case of a small-radius solenoid inside a large-radius solenoid, the magnetic field inside the small-radius solenoid is the magnetic field generated by itself plus the magnetic field generated by the large-radius solenoid. (The radius of the solenoids does not have to be with the instensity of the magnetic field):
BT = Bs + Bl
Bs: magnetic fiel of the small-radius solenoid
Bl: magnetic fiel of the large-radius solenoid
Hence:
BT = 2*μo*n*I
With 0.45 amp flowing through an 18-ohm resistor, the voltage across it is
V = I R = (0.45) x (18) = <em>8.1 volts .</em>
"But I asked for the battery voltage! That's the voltage across the resistor."
The ends of the resistor are connected directly to the battery terminals.
They're the same voltage.
"But what about the 6-ohm resistor ? Where does that figure in ?"
In parallel, it doesn't. It's also connected directly across the battery,
and it has its own current.
In parallel, neither resistor knows or cares whether or not there are
any other resistors present. In parallel, it makes no dif.
The answer to the question is A
Answer:
No
Explanation:
The vertical component of Jack's initial velocity is:
5.0
⋅
sin
30
∘
=
5.0
⋅
1
2
=
2.5
m/s
With gravitational acceleration
9.8
m/s
2
, he will reach the highest point of his trajectory after:
2.5
9.8
≈
0.255
s
The average vertical component of his velocity in that
0.255
s
will be:
1
2
⋅
2.5
=
1.25
m/s
So the highest point of his trajectory will be:
0.255
⋅
1.25
≈
0.32
m
So he will pass approximately
7
cm
above the top of the candle.
The horizontal component of his velocity will be a constant:
5.0
⋅
cos
30
∘
=
5.0
⋅
√
3
2
≈
4.33
m/s
So Jack's trajectory will be substantially longer than it is high and he will spend little time anywhere near above the candle.
Answer:
D.) Metal
Explanation:
light can not pass through metal.