Answer:
52 da
Step-by-step explanation:
Whenever a question asks you, "How long to reach a certain concentration?" or something similar, you must use the appropriate integrated rate law expression.
The i<em>ntegrated rate law for a first-order reaction </em>is
ln([A₀]/[A] ) = kt
Data:
[A]₀ = 750 mg
[A] = 68 mg
t_ ½ = 15 da
Step 1. Calculate the value of the rate constant.
t_½ = ln2/k Multiply each side by k
kt_½ = ln2 Divide each side by t_½
k = ln2/t_½
= ln2/15
= 0.0462 da⁻¹
Step 2. Calculate the time
ln(750/68) = 0.0462t
ln11.0 = 0.0462t
2.40 = 0.0462t Divide each side by 0.0462
t = 52 da
Answer: Larger molecules have stronger London forces.
Explanation:
Pentane therefore has a stronger force than butane.
Answer:
D metallic
Explanation:
The chemical bonding which rises from electrostatic attractive force between the conduction electrons and the positively charged metal ions is called metallic bonding.
<u>It is sharing of the free electrons among the structure of the positively charged ions which are known as cations.
</u>
<u>In this type of bonding, these free electrons freely move in the crystal mattice of the metal. </u>
The bonding accounts for properties of metals, such as ductility, strength, electrical and thermal conductivity and resistivity and luster.
C most likely sorry if I’m wrong