1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Delvig [45]
3 years ago
5

Can someone help me on this math

Mathematics
1 answer:
Tomtit [17]3 years ago
5 0
58.96 or 1887/32 id the answer
You might be interested in
Which of the following equations represents the line with a slope of -7/4 and a y-intercept of -11?
andreev551 [17]
Y= -7/4x - 11
My answer has to be 20 characters longkdmmwmmckkdmsnskckd
4 0
3 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Assuming that one-pint is equal to 473 ml, how many pints can be found in 3 liters?
Svetlanka [38]
Given that 1 pint is equal to 437 ml
and 1000 ml=1 liter
then
1 pint =(437/1000) liters
simplifying we get:
1 pint= 0.437 liters
thus amount of pints in 4 liters will be:
4/0.473
=8.45666586
~8.5 pints
4 0
3 years ago
A regular hexagon with side length 4 has the same area as a square. What is the length of the square?
svetlana [45]

Answer: The length of the square is 6.44

Step-by-step explanation:

By definition, the area of a Regular polygon can be calculated with the following formula:

A=\frac{s^2n}{4tan(\frac{180}{n})}

Where "s" the length of any side of the polygon and "n" is the number of sides .

According to the information given in the exercise, you know that:

s=4

Since an hexagon has six sides, you know that:

n=6

Therefore, its area is:

A_h=\frac{(4^2)(6)}{4tan(\frac{180}{6})}\\\\A_h=24\sqrt{3}

The formula to find the area of a square is:

A=s^2

Where "s" is the length of any side of the square.

Since that regular hexagon has the same area as this square, you can substituting the area calculated above into the formula for calculate the area of a square, and then solve for "s".

Then you get:

24\sqrt{3}=s^2\\\\\sqrt{24\sqrt{3}}=s\\\\s=6.44

7 0
3 years ago
I need help with #6!! Thanks
tatyana61 [14]
Use this formula:  d= \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }

a)  d=11

Work:
d=sqrt((4-(-7))^2+(5-5)^2
d=sqrt((11)^2+(0)^2)
d=sqrt(121+0)
d=sqrt(121)
d=11

b) d=4

c) d = 16

d) d=160

e) d=12
6 0
3 years ago
Other questions:
  • What is the slope of the line that contains these points?<br> (-1,10) (0,18) (1,26) (2,34)
    5·1 answer
  • WILL GIVE BRAINLIEST!!!
    15·1 answer
  • Please Help, Lots of points
    13·1 answer
  • Please please help. i need to pass this .
    9·1 answer
  • (MIDDLE SCHOOL MATH) please help!
    6·2 answers
  • Paul rolls a fair dice 132 times. <br> How many times would Paul expect to roll a three?
    9·2 answers
  • Happy Earth Day. Have a wonderful Day! If you answer you must give me ten Earth day Activities to answer. Thank you!
    5·2 answers
  • -
    13·1 answer
  • A bus driver applies a force of 55.0 N to the steering wheel which in turn applies 132 N of force on the steering column What is
    7·1 answer
  • Find the Product and Combine similar terms.<br>1. -1(7+4b) =<br>2. x(x²–2xy+y²) =<br>3. -5x(-3+x) =​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!