The size of the atoms a and the number of holes in the atoms can be used to decode the element.
<h3>What are models?</h3>
A model is a miniature depiction of reality. Molecular models often consists of boxes that contain balls which are used to represent elements. In common parlance, the color is used to show the type of element.
Apart from the color, the size of the atoms a and the number of holes in the atoms can be used to decode the element.
Learn more about molecular models:brainly.com/question/156574
#SPJ1
Answer:
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
ppm (parts per million) concentration is defined as the mass (in milligrams) of a substance dissolved in one liter of solution.
In our case we have:
mass of MgBr₂ = 12.41 g
volume of water (which is equal to the final solution volume) = 2.55 L
Now we devise the following reasoning:
if 12.41 g of MgBr₂ are dissolved in 2.55 L of water
then X g of MgBr₂ are dissolved in 1 L of water
X = (1 × 12.41) / 2.55 = 4.867 g of MgBr₂
if in 184 g (1 mole) of MgBr₂ we have 160 g of Br⁻
then in 4.867 g of MgBr₂ we have Y g of Br⁻
Y = (4.867 × 160) / 184 = 4.232 g of bromide (Br⁻)
4.232 g of bromide (Br⁻) = 4234 mg of bromide (Br⁻)
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Answer:
Option A:
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
Explanation:
The half reactions given are:
Zn(s) → Zn^(2+)(aq) + 2e^(-)
Cu^(2+) (aq) + 2e^(-) → Cu(s)
From the given half reactions, we can see that in the first one, Zn undergoes oxidation to produce Zn^(2+).
While in the second half reaction, Cu^(2+) is reduced to Cu.
Thus, for the overall reaction, we will add both half reactions to get;
Zn(s) + Cu^(2+) (aq) + 2e^(-) → Cu(s) + Zn^(2+)(aq) + 2e^(-)
2e^(-) will cancel out to give us;
Zn(s) + Cu^(2+) (aq) → Cu(s) + Zn^(2+)(aq)
10.92N
Force = mass x acceleration
4.2kg x 1.6m/s^2 = 10.92N
Answer:
1, 1, 2, 3
Explanation:
The numbers 1 and 8 both have 1 sig. fig.
The number 13 has 2 sig. figs.
The number 104 has 3 sig. figs.