Answer:
For Covalent bonds, atoms tend to share their electrons with each other to satisfy the Octet Rule. It requires 8 electrons because that is the amount of electrons needed to fill a s- and p- orbital (electron configuration); also known as a noble gas configuration
Explanation:
Hrxn = Q reaction / mol of reaction
mol of reaction = M * V = 10 * 1 = 10 mmol = 0.01 mol
Q water = m * C * (Tf - Ti)
= (10 + 10) (4.184) (26-20) = 502.08 J
Q reaction = - Q water = -502.08 J
Hrxn = -502.08 / (0.01) = - 50208 J = - 50.21 kJ/mol
Answer:
0.144M
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
HNO3 + KOH —> KNO3 + H20
From the equation,
nA = 1
nB = 1
From the question given, we obtained the following:
Ma =?
Va = 30.00mL
Mb = 0.1000M
Vb = 43.13 mL
MaVa / MbVb = nA/nB
Ma x 30 / 0.1 x 43.13 = 1
Cross multiply to express in linear form
Ma x 30 = 0.1 x 43.13
Divide both side by 30
Ma = (0.1 x 43.13) /30 = 0.144M
The molarity of the nitric acid is 0.144M
Answer:
Fluorine has seven electrons in 2p-subshell whereas chlorine has seven electrons in its 3p-subshell. 3p-subshell is relatively larger than 2p-subshell. Therefore, repulsion among the electrons will be more in the 2p-shell of fluorine than 3p-subshell in chlorine. Due to the smaller size and thus, the greater electron-electron repulsions, fluorine will not accept an incoming electron with the same as chlorine.