To find the height of the TV you first need to realize that the question is giving you dimensions for a triangle.
Every triangle has a hypotenuse and two sides. To find the hypotenuse you square both sides, add them, and then square root. So to find one of the sides you get the hypotenuse, square it, and subtract the square length of the given side.
The equation is 25^2-20^2.
Which if simplified is 625-400, the then solution is going to be 225.
You next will square root 225, 225^(1/2). Which your answer should be 15 inches for the missing side length.
22.5/(x-6) + 22.5/(x+6) = 9
multiply by x-6
=> (x-6)22.5/(x-6) + (x-6)22.5/(x+6) = 9(x-6)
=> 22.5 + (x-6)22.5/(x+6) = 9(x-6)
multiply by x+6
=> (x+6)22.5 + (x+6)(x-6)22.5/(x+6) = 9(x-6)(x+6)
=> (x+6)22.5 + (x-6)22.5 = 9(x-6)(x+6)
distribute
=> 22.5x+6(22.5) + 22.5x - 6(22.5) = 9(x^2 - 36)
=> 45x = 9x^2 - 9(36)
=> 0 = 9x^2 - 45x - 9(36)
divide by 9
=> 0 = x^2 - 5x - 36
=> 0 = x^2 - 5x - 36
=> 0 = (x - 9)(x + 4)
x=9 and -4
Answer:
hope this helps you a lot
have a great day
so we have the points of (0,-7),(7,-14),(-3,-19), let's plug those in the y = ax² + bx + c form, since we have three points, we'll plug each one once, thus a system of three variables, and then we'll solve it by substitution.

well, from the 1st equation, we know what "c" is already, so let's just plug that in the 2nd equation and solve for "b".

well, now let's plug that "b" into our 3rd equation and solve for "a".
![\bf -19=9a-3b-7\implies -12=9a-3b\implies -12=9a-3(-1-7a) \\\\\\ -12=9a+3+21a\implies -15=9a+21a\implies -15=30a \\\\\\ -\cfrac{15}{30}=a\implies \blacktriangleright -\cfrac{1}{2}=a \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{and since we know that}}{-1-7a=b}\implies -1-7\left( -\cfrac{1}{2} \right)=b\implies -1+\cfrac{7}{2}=b\implies \blacktriangleright \cfrac{5}{2}=b \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill y=-\cfrac{1}{2}x^2+\cfrac{5}{2}x-7~\hfill](https://tex.z-dn.net/?f=%5Cbf%20-19%3D9a-3b-7%5Cimplies%20-12%3D9a-3b%5Cimplies%20-12%3D9a-3%28-1-7a%29%20%5C%5C%5C%5C%5C%5C%20-12%3D9a%2B3%2B21a%5Cimplies%20-15%3D9a%2B21a%5Cimplies%20-15%3D30a%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B15%7D%7B30%7D%3Da%5Cimplies%20%5Cblacktriangleright%20-%5Ccfrac%7B1%7D%7B2%7D%3Da%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Band%20since%20we%20know%20that%7D%7D%7B-1-7a%3Db%7D%5Cimplies%20-1-7%5Cleft%28%20-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%3Db%5Cimplies%20-1%2B%5Ccfrac%7B7%7D%7B2%7D%3Db%5Cimplies%20%5Cblacktriangleright%20%5Ccfrac%7B5%7D%7B2%7D%3Db%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20y%3D-%5Ccfrac%7B1%7D%7B2%7Dx%5E2%2B%5Ccfrac%7B5%7D%7B2%7Dx-7~%5Chfill)
Answer:
Option D
Step-by-step explanation:
Given f(x) = ![\sqrt[3]{4x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4x%7D)
g(x) = 2x + 3
Since, 
![=\frac{\sqrt[3]{4x}}{2x+3}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4x%7D%7D%7B2x%2B3%7D)
This function is defined for the denominator is not equal to zero.
(2x + 3) ≠ 0
x ≠ 
Therefore, Option D will be the correct option.