Actually, the ionic equation for this is a reversible
equation since codeine is a weak base. Any weak base or weak acids do not
completely dissociate which makes them a reversible process. The ionic equation
for this case is:
<span>C18H21O3N + H3O+ </span><=>
C18H21O3NH+ + H2O
Answer:
The answer to your question is below
Explanation:
a)
Number of atoms = ?
moles of Fe = 4.75
-Use proportions to solve this problem
1 mol of Fe --------------------- 6.023 x 10²³ atoms
4.75 moles --------------------- x
x = (4.75 x 6.023 x 10²³) / 1
x = 2.86 x 10²⁴ / 1
Number of atoms = 2.86 x 10²⁴
b)
Number of moles = ?
moles of 1.058 moles of H₂O
I think this question is incorrect, maybe you wish to know the number of atoms or grams of H₂O.
c)
Number of atoms = ?
moles of Fe = 0.759
1 mol of Fe ------------------ 6.023 x 10²³ atoms
0.759 moles --------------- x
x = (0.759 x 6.023 x 10²³) / 1
x = 4.57 x 10²³ / 1
Number of atoms of Fe = 4.57 x 10²³ atoms
d)
Number of molecules = ?
moles of H₂O = 3.5 moles
1 mol of H₂O ------------------ 6.023 x 10²³ molecules
3.5 moles ------------------ x
x = (3.5 x 6.023 x 10²³) / 1
x = 2.11 x 10²⁴ molecules
Number of molecules = 2.11 x 10²⁴
Answer: IONIC EQUATION.
Explanation:
A chemical equation is defined as the form by which a chemical reaction is represented mathematically. These are written in the form of symbols and chemical formulas of reactants and products which are taking part in the chemical reaction. A chemical equation can be written in two forms, these include:
--> MOLECULAR EQUATION: in this type of equations, the compounds are written and represented in a molecular form. This is sometimes referred to as a balanced equation.
--> IONIC EQUATION: This is a type of chemical equation in which the electrolytes in aqueous solution are expressed as dissociated ions. A typical illustrated example is seen in the reaction between AgNO3(aq) and NaCl(aq) :
Ag+(aq) + NO3-(aq) + Na+(aq) + Cl-(aq) → AgCl(s) + Na+(aq) + NO3-(aq)
The (aq) written in the above equation signifies they are in aqueous solution.
This looks correct to me! <3 have a good day
ADP is like an uncharged battery. ATP is like a charged battery, ready to provide energy to do work in the cell. The charging of ADP into ATP takes place in the mitochondria. Fat and starch are stable (last a long time) whereas ATP goes dead too quick and will need to be recharged.
glucose is a carbon chain molecule (sugar). When the bonds in the chain are broken, energy is released. That energy is used to turn ADP into ATP. Glucose is the "electricity" used to charge the battery.