The most reasonable way to measure absolute zero would have been to extrapolate the ideal gas law.
<h3>What is Absolute zero?</h3>
This is referred to the temperature at which a thermodynamic system has the lowest form of energy.
Guillaume Amontons used gas equation to prove that absence of heat was theoretically possible which would have involved only extrapolating the ideal gas law.
Read more about Absolute zero here brainly.com/question/18560146
#SPJ1
Answer:
<u><em>Arrhenius Acid:</em></u>
According to Arrhenius concept, Acids are proton donors.
Since H₂SO₄ have a proton (H⁺ ion) and it can donate it to be made a sulphate ion, So it is an Arrhenius acid.
See the following reaction =>
<u><em>H₂SO₄ + H₂O => HSO₄ + H₃O⁺</em></u>
<u><em>Arrhenius Base:</em></u>
An Arrhenius base is a a proton acceptor.
KOH accepts the proton to to made to KOH₂ and a proton acceptor.
See the following reaction =>
<u><em>KOH + H₂o => KOH₂ + OH⁻</em></u>
<u><em></em></u>
9 is B
6 is A
i’m not sure about the rest
Explanation:
Formula to calculate how many particles are left is as follows.
N = 
where,
= number of initial particles
l = number of half lives
As it is given that number of initial particles is
and number of half-lives is 3.
Hence, putting the given values into the above equation as follows.
N = 
=
= 
or,
Thus, we can conclude that
particles of radioactive nuclei remain in the given sample.
In five hours we've gone through 5 half lives so the answer is:
particles
Answer:
Uuddhhdhdhddjfhbfjdvfbdksvsvsks bdjxbxbdkdhdkdhdbfdhddjdhdvdkdkdvhddvxxicjsvdvdjfvfdnddddhvfucixhdbe