Answer:
maximum isolator stiffness k =1764 kN-m
Explanation:
mean speed of rotation 


=65.44 rad/sec


= 0.1*(65.44)^2
F_T =428.36 N
Transmission ratio 
also
transmission ratio ![= \frac{1}{[\frac{w}{w_n}]^{2} -1}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B%5B%5Cfrac%7Bw%7D%7Bw_n%7D%5D%5E%7B2%7D%20-1%7D)
![0.7 =\frac{1}{[\frac{65.44}{w_n}]^2 -1}](https://tex.z-dn.net/?f=0.7%20%3D%5Cfrac%7B1%7D%7B%5B%5Cfrac%7B65.44%7D%7Bw_n%7D%5D%5E2%20-1%7D)
SOLVING FOR Wn
Wn = 42 rad/sec

k = m*W^2_n
k = 1000*42^2 = 1764 kN-m
k =1764 kN-m
Answer:
Define Variables and Use List methods to do the following
Explanation:
#<em>Conjoins two lists together</em>
all_names = male_names.union(female_names)
#<em>Finds the names that appear in both lists, just returns those</em>
neutral_names = male_names.intersection(female_names)
#<em>Returns names that are NOT in both lists</em>
specific_names = male_names.symmetric_difference(female_names)
Answer:
275 MPa
Explanation:
Regardless of what it is holding, the stiffness of a bolt depends on its own material properties and geometry.
The stiffness is:

I assume this one is made of steel, because regular bolts are steel.
The Young's modulus for steel is E = 210 GPa
The longitude is given. (But note that in a real application you have to consider the length up to the nut.)
The section is (using the nominal diameter of 10 mm)

Then:

An effect might be a customer not wanting to buy it specifically because it’s by an airport, or maybe the customer wants to buy it because it’s right next to the airport, and a lot of people go to the airport so therefore they might go to the building next to the airport.