1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
2 years ago
7

A horizontal pipe has an abrupt expansion from D1 5 8 cm to D2 5 16 cm. The water velocity in the smaller section is 10 m/s and

the flow is turbulent. The pressure in the smaller section is P1 5 410 kPa. Taking the kinetic energy correction factor to be 1.06 at both the inlet and the outlet, determine the downstream pressure P2, and estimate the error that would have occurred if Bernoulli’s equation had been used.

Engineering
1 answer:
anyanavicka [17]2 years ago
5 0
  • Answer:  Explanation:  Application of the bernoulli's equation comes in from conservation of mass flow.  The cross sectional area of the two pipes are calculated. from A = πD²/4 The velocity of water from conservation of mass flow is also calculated ; V2 = Ac1V1/Ac2 The Loss coefficient is then calculated from KL = (1 - Ac1²/Ac2²)² Then the head Loss (hL) is calculated  The detailed calculated and appropriate steps is as shown in the attached files.

You might be interested in
Una empresa realizó en el ejercicio de compras al contado por valor
Tanzania [10]

Answer:

englishhhh pleasee

Explanation:

we dont understand sorry....

8 0
3 years ago
How much does 1 gallon of water weigh in pound given that the density of water is 1gram/ cm3
MAXImum [283]

Explanation:

There are 8.35 pounds in a gallon of water. Water weighs 1 gram per cubic centimeter or 1 000 kilogram per cubic meter, i.e. density of water is equal to 1 000 kg/m³; at 25°C (77°F or 298.15K) at standard atmospheric pressure.

6 0
2 years ago
If he wants to keep the height the same, what could the other dimensions be for him to get the volume he wants?
Fiesta28 [93]

tbm queria saber essa pergunta

8 0
3 years ago
An equation used to evaluate vacuum filtration is Q = ΔpA2 α(VRw + ARf) , Where Q ≐ L3/T is the filtrate volume flow rate, Δp ≐
larisa86 [58]

Answer:

Explanation:

The explanations and answers are shown in the following attachments

6 0
2 years ago
Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at
sergeinik [125]

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

6 0
3 years ago
Other questions:
  • Can a 1½ " conduit, with a total area of 2.04 square inches, be filled with wires that total 0.93 square inches if the maximum f
    8·1 answer
  • The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
    12·1 answer
  • A 2-cm-diameter vertical water jet is injected upward by a nozzle at a speed of 15 m/s. Determine the maximum weight of a flat p
    10·1 answer
  • Create a Python program that will produce the following output:
    7·1 answer
  • Different metabolic control systems have different characteristic time scales for a control response to be achieved. Match the t
    6·1 answer
  • 1. Springs____________<br> energy when compressed<br> And _________energy when they rebound.
    12·1 answer
  • Practice finding the volume of a sphere.
    10·2 answers
  • Concrete ___ support and anchor the bottom of steel columns and wood post, which support beams that are pare of framing system o
    11·1 answer
  • Why is it important to follow the engineering design process before building a prototype
    13·1 answer
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!