Answer:
a. 2.08, b. 1110 kJ/min
Explanation:
The power consumption and the cooling rate of an air conditioner are given. The COP or Coefficient of Performance and the rate of heat rejection are to be determined. <u>Assume that the air conditioner operates steadily.</u>
a. The coefficient of performance of the air conditioner (refrigerator) is determined from its definition, which is
COP(r) = Q(L)/W(net in), where Q(L) is the rate of heat removed and W(net in) is the work done to remove said heat
COP(r) = (750 kJ/min/6 kW) x (1 kW/60kJ/min) = 2.08
The COP of this air conditioner is 2.08.
b. The rate of heat discharged to the outside air is determined from the energy balance.
Q(H) = Q(L) + W(net in)
Q(H) = 750 kJ/min + 6 x 60 kJ/min = 1110 kJ/min
The rate of heat transfer to the outside air is 1110 kJ for every minute.
Answer:
KAT
Explanation:
I believe this is what ur looking for
Answer:
used for ordinary combustibles, such as wood, paper, some plastics, and textiles. This class of fire requires the heat-absorbing effects of water or the coating effects of certain dry chemicals.
Explanation:
Answer:
Explanation:
volume of 20.9 N
= 20.9 / 11.5 m³
= 1.8174 m³
In one hour 1.8174 m³ flows
in one second volume flowing = 1.8174 / 60 x 60
= 5 x 10⁻⁴ m³
Rate of volume flow = 5 x 10⁻⁴ m³ / s .
Where’s the question at ???