We can actually deduce here that making a airtight seal will take different format. You can:
- Use an epoxy-resin to create an airtight seal
- Create a glass-metal airtight seal
- Make a ceramic-metal airtight seal.
<h3>What is an airtight seal?</h3>
An airtight seal is actually known to be a seal or sealing that doesn't permit air or gas to pass through. Airtight seal are usually known as hermetic seal. They are usually applied to airtight glass containers but the advancement in technology has helped to broaden the materials.
We can see that epoxy-resin can used to create an airtight seal. They create airtight seals to copper, plastics, stainless steels, etc.
When making glass-metal airtight seal, the metal should compress round the solidified glass when it cools.
Learn more about airtight seal on brainly.com/question/14977167
#SPJ1
Answer:
a)
The crack and connecting rod is used in the design of car.This mechanism is known as slider -crank mechanism.
Components:
1.Inlet tube
2. Wheel
3. Exhaust
4. Engine
5.Air tank
6.Pressure gauge
7.Stand
8. Gate valve
b)
The efficiency of air engine is less as compare to efficiency of electric engine and this is not ecofriendly because it produce green house gases.These gases affect the environment.
c)
it can run around 722 km when it is full charge.
Answer:
V = 0.30787 m³/s
m = 2.6963 kg/s
v2 = 0.3705 m³/s
v2 = 6.017 m/s
Explanation:
given data
diameter = 28 cm
steadily =200 kPa
temperature = 20°C
velocity = 5 m/s
solution
we know mass flow rate is
m = ρ A v
floe rate V = Av
m = ρ V
flow rate = V =
V = Av = 
V = 
V = 0.30787 m³/s
and
mass flow rate of the refrigerant is
m = ρ A v
m = ρ V
m =
= 
m = 2.6963 kg/s
and
velocity and volume flow rate at exit
velocity = mass × v
v2 = 2.6963 × 0.13741 = 0.3705 m³/s
and
v2 = A2×v2
v2 = 
v2 = 
v2 = 6.017 m/s
Answer:
The total tube surface area in m² required to achieve an air outlet temperature of 850 K is 192.3 m²
Explanation:
Here we have the heat Q given as follows;
Q = 15 × 1075 × (1100 -
) = 10 × 1075 × (850 - 300) = 5912500 J
∴ 1100 -
= 1100/3
= 733.33 K

Where
= Arithmetic mean temperature difference
= Inlet temperature of the gas = 1100 K
= Outlet temperature of the gas = 733.33 K
= Inlet temperature of the air = 300 K
= Outlet temperature of the air = 850 K
Hence, plugging in the values, we have;

Hence, from;
, we have
5912500 = 90 × A × 341.67

Hence, the total tube surface area in m² required to achieve an air outlet temperature of 850 K = 192.3 m².