boiling point - condensation point
is the answer i would choose because it makes more scene
C. 28 KJ
AMU of H2O2 = 2(1) + 2(16) = 34 g/mol
10 g / 34 g/mol = 0.294 mol H2O2
0.294 mol / H = 2 mol / 190 KJ
H = 28.9 KJ
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
The true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
<h3>What is true about the given reaction?</h3>
The given reaction shows a reaction between A and B to form CD
The reaction is a reversible reaction.
A reversible reaction is a reaction which can proceed in either of two ways where the reactants can react to form the product and also the products an break down to form the reactants.
In the reaction given, as the concentration of A and b decreases, the concentration of CD increases and vice versa.
At equilibrium, the rate of formation of CD is equal to the the rate of decomposition of CD.
Therefore, the true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
In conclusion, a reaction at equilibrium has the forward and backward reactions occurring at the sane rate.
Learn more about equilibrium reaction at: brainly.com/question/18849238
#SPJ1
<u>Answer:</u> The final volume of lungs is 621.5 mL
<u>Explanation:</u>
To calculate the new volume, we use the equation given by Boyle's law. This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of lungs is 621.5 mL