Answer:
The perceived mass of CO2 would not be affected in large quantities because the splash constitutes small particles of water with sodium bicarbonate that is still reacting. The final calculated mass of sodium bicarbonate in the tablet would be artificially low.
Explanation:
Effervescence is a chemical process that involves the reaction of an acid with a carbonate or sodium bicarbonate, releasing carbon dioxide through a liquid. An example is seen in carbonated beverages, in these the gas that escapes from the liquid is carbon dioxide. The bubbles that are seen are produced by the effervescence of the dissolved gas, which by itself is not visible in its dissolved form.
The metalloids are on the right side of the periodic table B, Si, Ge, As, Sb, Te, and At. The nonmetals are also on the right side next to the metalloids, there should be a He at the top right of the periodic table and there should be one more nonmetal at the top left of the periodic table that is H. And from the metals they are all on the middle next to the metalloids, starting from Li, Be, Na, and Mg as so on all of those are metals.
In order to compute the mass of each solute in the sample, we simply multiply the percentage mass of each solute with the total mass of the solution. This is ad such:
Mass (NaCl) = 0.0486 x 294
Mass (NaCl) = 14.29 grams
Mass(Na₂CO₃) = 0.0754 x 294
Mass(Na₂CO₃) = 22.17 grams
Use the ideal gas law PV = nRT and manipulate it to solve for n. PV/RT = n.
Convert to SI units:
660ml -> 0.660 L
27 degrees -> 300 K
Leave Pressure as is
Use 62.36368 for R becuase you are using mmHg for Pressure.
Now plug into the equation to get about 0.025928 mols. Divide the 3.30 grams by the mols to get about 127 g/mol.