Answer:
Area of Trapezoid is 39 unit²
Step-by-step explanation:
Given as :
For A Trapezoid
The measure of base side 1 =
= 10 unit
The measure of base side 2 =
= 16 unit
The height of the Trapezoid = h = 3 unit
Let The Area of Trapezoid = A square unit
<u>Now, From Formula</u>
Area of Trapezoid =
× (sum of opposite base) × height
I.e A =
× (
+
) × h
Or, A =
× (10 unit + 16 unit) × 3 unit
Or, A =
× (26 unit) × 3 unit
Or, A =
× 78 unit²
Or, A =
unit²
I.e A = 39 unit²
So, The Area of Trapezoid = A = 39 unit²
Hence, The Area of Trapezoid is 39 unit² . Answer
Where did the 9 and 2 come from
Answer:
B: II, IV, I, III
Step-by-step explanation:
We believe the proof <em>statement — reason</em> pairs need to be ordered as shown below
Point F is a midpoint of Line segment AB Point E is a midpoint of Line segment AC — given
Draw Line segment BE Draw Line segment FC — by Construction
Point G is the point of intersection between Line segment BE and Line segment FC — Intersecting Lines Postulate
Draw Line segment AG — by Construction
Point D is the point of intersection between Line segment AG and Line segment BC — Intersecting Lines Postulate
Point H lies on Line segment AG such that Line segment AG ≅ Line segment GH — by Construction
__
II Line segment FG is parallel to line segment BH and Line segment GE is parallel to line segment HC — Midsegment Theorem
IV Line segment GC is parallel to line segment BH and Line segment BG is parallel to line segment HC — Substitution
I BGCH is a parallelogram — Properties of a Parallelogram (opposite sides are parallel)
III Line segment BD ≅ Line segment DC — Properties of a Parallelogram (diagonals bisect each other)
__
Line segment AD is a median Definition of a Median