It's its center:
(-2, 4)
Can't read y-4 or y+4, change the sign.
y-4 ---> SOLUTION: (-2,4)
y+4 ---> SOLUTION: (-2, -4)
<span> first, write the equation of the parabola in the required form: </span>
<span>(y - k) = a·(x - h)² </span>
<span>Here, (h, k) is given as (-1, -16). </span>
<span>So you have: </span>
<span>(y + 16) = a · (x + 1)² </span>
<span>Unfortunately, a is not given. However, you do know one additional point on the parabola: (0, -15): </span>
<span>-15 + 16 = a· (0 + 1)² </span>
<span>.·. a = 1 </span>
<span>.·. the equation of the parabola in vertex form is </span>
<span>y + 16 = (x + 1)² </span>
<span>The x-intercepts are the values of x that make y = 0. So, let y = 0: </span>
<span>0 + 16 = (x + 1)² </span>
<span>16 = (x + 1)² </span>
<span>We are trying to solve for x, so take the square root of both sides - but be CAREFUL! </span>
<span>± 4 = x + 1 ...... remember both the positive and negative roots of 16...... </span>
<span>Solving for x: </span>
<span>x = -1 + 4, x = -1 - 4 </span>
<span>x = 3, x = -5. </span>
<span>Or, if you prefer, (3, 0), (-5, 0). </span>
Answer:
y = (-3/2)x + 7
Step-by-step explanation:
3x + 2y = -4 (rearrange to slope intercept form y = mx + b)
2y = -3x - 4
y = (-3/2) x - 2
comparing this to the general form of a linear equation : y = mx + b
we see that slope of this line (and every line that is parallel to this line),
m = -3/2
if we sub this back in to the general form, we get:
y = (-3/2)x + b
We are still missing the value of b. To find this, we are given that the point (4,1) lies on the line. We simply substitute this back into the equation and solve for b.
1 = (-3/2)4 + b
1 = -6 + b
b = 7
substituting this back into the equation:
y = (-3/2)x + 7
Mode (most occurring) - 4
mean (average) - 8
median (middle number from least to greatest) - 4
<span>Rectangular Prism Volume = length × width × height
</span>
So 4 of those could make the prism:
<span>2 units, 3 units, 6 units
36 units, 1 unit, 1 unit
9 units, 2 units, 2 units
12 units, 3 units, 1 unit
</span>
<span />