Answer:
2,776
Step-by-step explanation:
the name <u>pre</u>decessor means <u>before</u> hence the number just before 2777.
Sin J = cos K
sin J = cos (90 - J)
So, K = 90 - J
Therefore, 60 deg, 30 deg satisfy the condition sin J = cos K.
Answer:
How to solve your problem
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+y^{3}y-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
Simplify
1
Combine exponents
−
7
2
−
2
2
+
3
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{3}y}}-2y+5y^{3}-2y
−7y2−2y2+y3y−2y+5y3−2y
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
-7y^{2}-2y^{2}+{\color{#c92786}{y^{4}}}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
2
Combine like terms
−
7
2
−
2
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-7y^{2}}}{\color{#c92786}{-2y^{2}}}+y^{4}-2y+5y^{3}-2y
−7y2−2y2+y4−2y+5y3−2y
−
9
2
+
4
−
2
+
5
3
−
2
{\color{#c92786}{-9y^{2}}}+y^{4}-2y+5y^{3}-2y
−9y2+y4−2y+5y3−2y
3
Combine like terms
−
9
2
+
4
−
2
+
5
3
−
2
-9y^{2}+y^{4}{\color{#c92786}{-2y}}+5y^{3}{\color{#c92786}{-2y}}
−9y2+y4−2y+5y3−2y
−
9
2
+
4
−
4
+
5
3
-9y^{2}+y^{4}{\color{#c92786}{-4y}}+5y^{3}
−9y2+y4−4y+5y3
4
Rearrange terms
−
9
2
+
4
−
4
+
5
3
{\color{#c92786}{-9y^{2}+y^{4}-4y+5y^{3}}}
−9y2+y4−4y+5y3
4
+
5
3
−
9
2
−
4
{\color{#c92786}{y^{4}+5y^{3}-9y^{2}-4y}}
y4+5y3−9y2−4y
Solution
4
+
5
3
−
9
2
−
4
Multiplication was invented to reduce the work involved in repeated addition.
... 88 + 88 + 88 + 88 = 4×88 = 352
352 passengers are carried <em>to</em> the island each day.
_____
Some questions must be answered before we can give a definite answer.
1. If the same person rides twice, are they counted twice?
2. Are passengers on the return trips (<em>from</em> the island) counted?
3. If return trip passengers are counted, is the ferry full on those trips?
4. Does every passenger to the island return the same day?
5. Does any passenger go to the island more than once per day?
Answer:
The answer to your question is log₁₀ x + b = a
Step-by-step explanation:
General formula
Logarithmic function Exponential function
log ₐ b = c 
a = antilogaritm c = exponent
b = base b = base
c = logaritm a = power
In your problem
10 = base
a = exponent
x + b = power
Exponential function log₁₀ x + b = a