Answer:
3¼
Step-by-step explanation:
We take any of the two points shown in the question. I will take (-3, 1) and (1, 14).
x¹ = -3
y¹ = 1
x² = 1
y² = 14
Now, we sub these figures into the formula.
This leaves us with 14-1/1+3, which we can make into 13/4
13/4 = 3¼
<em>Disclaimer</em><em>:</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>not</em><em> </em><em>actually</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>power</em><em> </em><em>of</em><em> </em><em>two</em><em>,</em><em> </em><em>but</em><em> </em><em>a</em><em> </em><em>way</em><em> </em><em>to</em><em> </em><em>distinguish</em><em> </em><em>one</em><em> </em><em>x</em><em> </em><em>(</em><em>or</em><em> </em><em>y</em><em>)</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>other</em><em>.</em><em> </em><em>It</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>label</em><em> </em><em>of</em><em> </em><em>sorts</em><em>.</em>
we have point (-6, - 1)
Now we will put these points in each equation,
y = 4x +23
put x = -6 and y = -1
-1 = 4 (-6) +23
-1 = -24 + 23
-1 = -1
LHS = RHS, so this equation has (-6 , -1) as solution.
y = 6x
put x = -6 and y = -1
-1 = 6 (-6)
-1 not= -36
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y = 3x - 5
put x = -6 and y = -1
-1 = 3 (-6) - 5
-1 = -18 - 5
-1 not= -23
LHS is not equal RHS, so (-6 , -1) is not a solution for that equation,
y= 1/6 x
put x = -6 and y = -1
-1 = -6/6
-1 = -1
LHS = RHS, so (-6 , -1) is a solution for that equation,
Answer:
b) The width of the confidence interval becomes narrower when the sample mean increases.
Step-by-step explanation:
The confidence interval can be calculated as:
a) The width of the confidence interval becomes wider as the confidence level increases.
The above statement is true as the confidence level increases the width increases as the absolute value of test statistic increases.
b) The width of the confidence interval becomes narrower when the sample mean increases.
The above statement is false. As the sample mean increases the width of the confidence interval increases.
c) The width of the confidence interval becomes narrower when the sample size n increases.
The above statement is true as the sample size increases the standard error decreases and the confidence interval become narrower.
Answer: it’s C
Because Kendall scored 3 times abdul
8k+14
Hope this helps !!!