Answer:
Airplane #1 equation: y=5/13x+42/13
Airplane #2 equation: y=1/3x+14
Step-by-step explanation:
So to find the slope of each airplane, you use the formula y2-y1/x2-x1. That means, for airplane#1 the equation will be 9-4/15-2. Simplify this and get 5/13. Then, for airplane#2, the equation will be 12-9/6-15. Simplify this and get 3/-9 and divide each side by 3 to get 1/-3 or -1/3. Next, use point slope formula to find the system of linear equations. Point slope formula is y-y1=m(x-x1). M is the slope. Use any point from the line. In this case, I will use (2,4). Tat means the first airplane's equation would be y-4=5/13(x-2). Then y-4=5/13x-10/13. Then, convert four into a fraction with a denominator of 13. This means, you have to multiply 4 by 13 to get 52/13. Add 52/13 to -10/13 to get 42/13. That means the first equation will be y=5/13x+42/13. The second equation point will be (6,12). This means the equation will be y-12=-1/3(x-6). Simplify this to get y-12=-1/3x+2. Simplify this to get y=1/3x+14. Therefore, Airplane#1 equation will be y=5/13x+42/13 and airplane #2 equation will be y=1/3x+14.
Hope this helps
Step-by-step explanation:
You can solve systems of equations using either substitution or elimination. For these problems, I recommend elimination. I'll do the first one as an example.
-3x + 16y = 9
-4x + 8y = 12
Multiply the second equation by -2.
8x − 16y = -24
Add to the first equation (notice the y's cancel out).
(-3x + 16y) + (8x − 16y) = 9 − 24
5x = -15
Solve for x.
x = -3
Now you can plug this into either equation to find y.
-3(-3) + 16y = 9
9 + 16y = 9
y = 0
The solution is (-3, 0).
I don’t understand if this is a math problem or a statement.
Answer:
Step-by-step explanation:
<u>Use of formula:</u>
- P(A and B) = P(A)*P(B|A) and
- P(A and B) = P(B)*P(A|B)
<u>According to above and based on given:</u>
- P(A)P(B|A) = P(B)P(A|B)
- P(B|A) = P(A|B)*P(B)/P(A)
- P(B|A) = 0.20*0.40/0.25 = 0.32