Answer:
Einstein's general theory of relativity is the theory behind black holes has been tested with a wide range of experiments of which all confirm the predictions the theory makes. We cannot see black holes phenomena inside the event horizon, we do observe things outside this limit.
Black holes in binary star systems leave signs of their presence on neighboring star thats detected and the signs include X-ray emissions, accretion disks, and large orbit perturbations.
this is the evidence that astronomers and physicists have to show that the theory about black holes is correct.
Answer:
Diagram A will reach the top first.
Explanation:
If it is going straight, it will go slower. The higher the movement speed the faster it is. Hope this helps!
In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:
P/T = Constant
Then

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)
Substituting;
Solution :
Given weight of Kathy = 82 kg
Her speed before striking the water,
= 5.50 m/s
Her speed after entering the water,
= 1.1 m/s
Time = 1.65 s
Using equation of impulse,

Here, F = the force ,
dT = time interval over which the force is applied for
= 1.65 s
dP = change in momentum
dP = m x dV
![$= m \times [V_f - V_o] $](https://tex.z-dn.net/?f=%24%3D%20m%20%5Ctimes%20%5BV_f%20-%20V_o%5D%20%24)
= 82 x (1.1 - 5.5)
= -360 kg
∴ the net force acting will be


= 218 N
Answer:
The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A
Explanation:
Force on a wire carrying current in an electric field is given by
F = (B)(I)(L) sin θ
For this question,
The magnetic force must match the weight of the wire.
F = mg
mg = (B)(I)(L) sin θ
(m/L)g = (B)(I) sin θ
Mass per unit length = 75 g/m = 0.075 kg/m
B = magnetic field = 0.12 T
I = ?
g = acceleration due to gravity = 9.8 m/s
θ = angle between wire's current direction and magnetic field = 90°
0.075 × 9.8 = 0.12 × I sin 90°
I = 0.075 × 9.8/0.12 = 6.125 A