1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sloan [31]
3 years ago
13

I need help please with this question

Mathematics
1 answer:
hjlf3 years ago
8 0

Answer:r=(-1)

Step-by-step explanation: With a slope of two, the line would go through the origin and it would be equal on the other side, therefore, (2,1) and (-2,-1) would be on the same line with a slope of 2

You might be interested in
A school wishes to enclose its rectangular playground using 480 meters of fencing.
Harlamova29_29 [7]

Answer:

Part a) A(x)=(-x^2+240x)\ m^2

Part b) The side length x that give the maximum area is 120 meters

Part c) The maximum area is 14,400 square meters

Step-by-step explanation:

The picture of the question in the attached figure

Part a) Find a function that gives the area A(x) of the playground (in square meters) in terms of x

we know that

The perimeter of the rectangular playground is given by

P=2(L+W)

we have

P=480\ m\\L=x\ m

substitute

480=2(x+W)

solve for W

240=x+W\\W=(240-x)\ m

<u><em>Find the area of the rectangular playground</em></u>

The area is given by

A=LW

we have

L=x\ m\\W=(240-x)\ m

substitute

A=x(240-x)\\A=-x^2+240x

Convert to function notation

A(x)=(-x^2+240x)\ m^2

Part b) What side length x gives the maximum area that the playground can have?

we have

A(x)=-x^2+240x

This function represent a vertical parabola open downward (the leading coefficient is negative)

The vertex represent a maximum

The x-coordinate of the vertex represent the length that give the maximum area that the playground can have

Convert the quadratic equation into vertex form

A(x)=-x^2+240x

Factor -1

A(x)=-(x^2-240x)

Complete the square

A(x)=-(x^2-240x+120^2)+120^2

A(x)=-(x^2-240x+14,400)+14,400

A(x)=-(x-120)^2+14,400

The vertex is the point (120,14,400)

therefore

The side length x that give the maximum area is 120 meters

Part c) What is the maximum area that the playground can have?

we know that

The y-coordinate of the vertex represent the maximum area

The vertex is the point (120,14,400) -----> see part b)

therefore

The maximum area is 14,400 square meters

Verify

x=120\ m

W=(240-120)=120\ m

The playground is a square

A=120^2=14,400\ m^2

8 0
3 years ago
How do you solve this 2x +5 - 7x = 15
Serga [27]
1. combine like terms (2x and -7x) to create -5x
2. subtract 5 from each side to create: -5x=10
3. divide both sides by -5
4. x=-2
7 0
3 years ago
Sketch a cylinder with radius 8 feet and height 3 feet, then find the volume.
4vir4ik [10]

Answer: 339.29ft^3

Step-by-step explanation:

The formula for a cylinder is πr^2h

In your scenario, r=8 and h=3 so put those into the equation -

π8^2(3) and just solve!

7 0
3 years ago
Definition: The statement formed when an equal sign is placed between two expressions is called an
melamori03 [73]

Answer:

equation

example=2+3=5

7 0
3 years ago
A square has a perimeter of 12x+52 units which expression represents the side length of the square in units
saw5 [17]
The side of the square is (12x+52)/4=3x+13.
3 0
3 years ago
Read 2 more answers
Other questions:
  • Which congruence theorem can be used to prove WXS and YZS?
    15·1 answer
  • (01.02 MC) Which value is equivalent to (the picture)
    11·2 answers
  • 33% of what number is 1.45?
    11·2 answers
  • What is the equation of this graphed line?
    7·2 answers
  • Which of the following expressions are equivalent to − -e/-f
    10·1 answer
  • When I evaluate expressions I must follow the order of operations?
    10·1 answer
  • Please help I'll give brainliest to right answer<br> 20m + 6m − 17m = 9<br> What does "M" equal?
    11·1 answer
  • An object is launched upward from 62.5 meters above ground level with an
    14·1 answer
  • X2-x-6=0, then x is<br>​
    8·2 answers
  • 2p/r =t solve for r<br> please solve this equation i will reward 50 points
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!