<span>58.6934 +/- 0.0002 u</span>
Answer:
3.82 x 10²¹ molecules As₂O₃
Explanation:
To find the amount of molecules arsenic (III) oxide (As₂O₃), you need to (1) convert kg to lbs, then (2) convert g As₂O₃ to moles As₂O₃ (via molar mass), and then (3) convert moles to molecules (via Avogadro's number).
1 kilogram = 2.2 lb
Molar Mass (As₂O₃): 2(74.992 g/mol) + 3(15.998 g/mol)
Molar Mass (As₂O₃): 197.978 g/mol
Avogadro's Number:
6.022 x 10²³ molecules = 1 mole
0.0146 g As₂O₃ 1 kg 189 lb
------------------------ x --------------- x ------------------ x ................
1 kg 2.2 lb
1 mole 6.022 x 10²³ molecules
x ------------------ x --------------------------------------- = 3.82 x 10²¹ molecules As₂O₃
197.978 g 1 mole
Answer:
with the molecular formula C3H5(ONO2)3, has a high nitrogen content (18.5 percent) and contains sufficient oxygen atoms to oxidize the carbon and hydrogen atoms while nitrogen is being liberated, so that it is one of the most powerful explosives known.
Explanation:
NTG reduces preload via venous dilation, and achieves modest afterload reduction via arterial dilation. These effects result in decreased myocardial oxygen demand. In addition, NTG induces coronary vasodilation, thereby increasing oxygen delivery.
CH4 : H2O
1 : 2
number of moles of H2O = 1.00 x 2
number of moles of H2O = 2.00mol
mass = number of moles x molar mass
mass of H2O = 2.00 x (1 + 1 + 16)
mass of H2O = 36g
Answer:
The change in temperature that occurs when 8000 J of heat is used by a mass 75 g of water is 25.4 °C
Explanation:
H = mc ΔT
m = 75 g
c = 4. 200 J/ g °C
H = 8000 J
ΔT =?
Rearranging the formula, making ΔT the subject of formula;
ΔT = H / m c
ΔT = 8000 / 75 * 4.200
ΔT = 8000 / 315
ΔT = 25.4 °C