Answer:
Decimal form: 3/20 = 0.15
Percent form 3*100 / 20 = 300 / 20 15%
Step-by-step explanation:
3/20 can be written as:
- Decimal form: 3/20 = 0.15
- Percent form 3*100 / 20 = 300 / 20 15%
Hope this help you :3
Answer:
1.304
Step-by-step explanation:
I am not sure for the answer
Answer: 1.704 x 10^9
Step-by-step explanation: Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the
10
. If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
Answer:
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Step-by-step explanation:
Given integral is I= 
Take logx=t





I= 
I= 
Using integration by part,
![I= (t)\int [e^{(n+1)t}]\, dt-\int[\frac{d}{dt}{t}\times\int (e^{(n+1)t})]\\\\I= (t) [\frac{1}{n+1}e^{(n+1)t}]-\int[1\times\frac{1}{n+1}e^{(n+1)t}]\,dt\\\\I=[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=I%3D%20%28t%29%5Cint%20%5Be%5E%7B%28n%2B1%29t%7D%5D%5C%2C%20dt-%5Cint%5B%5Cfrac%7Bd%7D%7Bdt%7D%7Bt%7D%5Ctimes%5Cint%20%28e%5E%7B%28n%2B1%29t%7D%29%5D%5C%5C%5C%5CI%3D%20%28t%29%20%5B%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5Cint%5B1%5Ctimes%5Cfrac%7B1%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D%5C%2Cdt%5C%5C%5C%5CI%3D%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
Writing in terms of x
I=![[\frac{t}{n+1}e^{(n+1)t}]-[\frac{1}{(n+1)^{2}}e^{(n+1)t}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bt%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29t%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29t%7D%5D)
I=![[\frac{logx}{n+1}e^{(n+1)logx}]-[\frac{1}{(n+1)^{2}}e^{(n+1)logx}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7B%28n%2B1%29logx%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7B%28n%2B1%29logx%7D%5D)
I=![[\frac{logx}{n+1}e^{logx^{(n+1)}}]-[\frac{1}{(n+1)^{2}}e^{logx^{(n+1)}}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7De%5E%7Blogx%5E%7B%28n%2B1%29%7D%7D%5D)
I=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)
Thus,
Integration of I=
=![[\frac{logx}{n+1} x^{(n+1)}]-[\frac{1}{(n+1)^{2}}x^{(n+1)}]](https://tex.z-dn.net/?f=%5B%5Cfrac%7Blogx%7D%7Bn%2B1%7D%20x%5E%7B%28n%2B1%29%7D%5D-%5B%5Cfrac%7B1%7D%7B%28n%2B1%29%5E%7B2%7D%7Dx%5E%7B%28n%2B1%29%7D%5D)