I’m not 100% sure but part a is 144 part b is the composite
Answer:
Combine terms with the same variable and the same exponent
Step-by-step explanation:
remember that when you combine like terms, you combine the terms with the exact same variable by adding them or subtracting them, depending on the operation they have attached to them. Terms with exponents work exactly the same way! hope this helps you :)
Answer:
Step-by-step explanation:
ML
Answer:
For a function y = f(x), the range is the set of all the possible values of y.
In the question you wrote:
y = secx - 2
This can be interpreted as:
y = sec(x - 2)
or
y = sec(x) - 2
So let's see each case (these are kinda the same)
If the function is:
y = sec(x - 2)
Firs remember that:
sec(x) = 1/cos(x)
then we can rewrite:
y = 1/cos(x - 2)
notice that the function cos(x) has the range -1 ≤ y ≤ 1
Then for the two extremes we have:
y = 1/1 = 1
y = 1/-1 = -1
Notice that for:
y = 1/cos(x - 2)
y can never be in the range -1 < x < 1
As the denominator cant be larger, in absolute value, than 1.
Then we can conclude that the range is all reals except the interval:
-1 < y < 1
If instead the function was:
y = sec(x) - 2
y = 1/cos(x) - 2
Then with the same reasoning, the range will be the set of all real values except:
-1 - 2 < y < 1 - 2
-3 < y < -1
Answer:
just crop it ok
Step-by-step explanation:
I'm not sure ok