At the same time, however, you get less detail or less precision in a chart or graph than you do in the table. Imagine the difference between a table of sales figures for a ten-year period and a line graph for that same data. You get a better sense of the overall trend in the graph but not the precise dollar amount.
Cznxjsjssbsishsisbsisbsisbsbeoeb
Answer:
A) 1.67 x 10 ⁻⁶ m/s
B)5.59 x
%
Explanation:
A)
Given:
d = 5.0 km,
mₐ = 2.5 x
kg
u₁ = 4.0 x 10⁴ m/s
= 5.98 x 10 ²⁴ kg
Solve using kinetic conserved energy
mₐ x u₁ +
x u₂ = uₓ x (mₐ +
)
(2.5 x
) (4.0 x 10⁴ )+ (5.98 x 10 ²⁴ )(0) = uₓ x (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = ( 2.5 x
x 4.0 x 10⁴ ) / (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = 1.67 x 10 ⁻⁶ m/s
B) Assuming earth radius as a R = 1.5 x 10 ¹¹ m
t = 365 days x 24 hr / 1 day x 60 minute / 1 hr x 60s / 1 minute = 31536000 s
t = 31536000 s
D = 2 π R = 2 π( 1.5 x 10 ¹¹ )
D = 9.4247 x 10 ¹¹ m
u₂ = D / t = 9.4247 x 10 ¹¹ / 31536000
u₂ = 29885.775 m/s
% = ( 1.67 x 10 ⁻⁶ m/s ) / (29885.775 m/s) x 100
% = 5.59 x
%
Answer:
the impulse experienced by this object is 4 Ns
Explanation:
Given;
mass of the object, m = 3 kg
velocity of the object, v = 4 m/s
resistive force, F = 20 N
duration of impact, t = 0.2 s
The impulse experienced by this object is calculated as follows;
J = F x t
J = 20 x 0.2
J = 4 Ns
Therefore, the impulse experienced by this object is 4 Ns