Answer:
2682
Explanation:
Work done is given by :
Work = Force x distance
= mg x d
So, work done in lifting the box of 23 kg up to my waist of 1 m high is :
W = mg x d
= 23 x 9.18 x 1
= 211.14
Now work done carrying the box horizontally 6 meters across the room is
W = mg x d
= 23 x 9.18 x 6
= 1266.84
Work done in placing the box on the shelf that is 5.7 m above the ground is
W = mg x d
= 23 x 9.18 x 5.7
= 1203.49
So the total work done is = 211.14 + 1266.84 + 1203.49
= 2681.47
= 2682 (rounding off)
The answer is Newton's 3rd Law. The reason why is because a force is a push or a pull that acts upon an object as a results of its interaction with another object. ... These two forces are called action and reaction forces and are the subject ofNewton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction.
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .