Answer:
force is the answer because force is pushing the item
Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
Because melting point<span> and </span>freezing point<span> describe the</span>same<span> transition of matter, in this case from liquid to solid (</span>freezing) or equivalently, from solid to liquid (melting<span>).</span>
The question is incomplete. You dis not provide values for A and B. Here is the complete question
Light in the air is incident at an angle to a surface of (12.0 + A) degrees on a piece of glass with an index of refraction of (1.10 + (B/100)). What is the angle between the surface and the light ray once in the glass? Give your answer in degrees and rounded to three significant figures.
A = 12
B = 18
Answer:
18.5⁰
Explanation:
Angle of incidence i = 12.0 + A
A = 12
= 12.0 + 12
= 14
Refractive index u = 1.10 + B/100
= 1.10 + 18/100
= 1.10 + 0.18
= 1.28
We then find the angle of refraction index u
u = sine i / sin r
u = sine24/sinr
1.28 = sine 24 / sine r
1.28Sine r = sin24
1.28 sine r = 0.4067
Sine r = 0.4067/1.28
r = sine^-1(0.317)
r = 18.481
= 18.5⁰
Answer:
Block A
Explanation:
Block A will float higher in the water compared to the second Block.
The density of water is 1g/cm³.
According to the principle of floatation "an object that floats in a liquid will displace equal amount of fluid to the weight of the object".
A body will become more submerged in water if it has more density because density is the mass per volume of body.
An object with a higher density than another will sink in the liquid of the one with lesser density.
- Object A has lesser density and will float higher up and displace very little water.
- Object B has higher density and will be more submerged.