Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²
Answer:
Explanation:
Work is defined as the scalar product of force and distance
W=F•d
Given that
F = 8.5i + -8.5j. +×-=-
F=8.5i-8.5j
d = 2.5i + cj
If the work in the practice is zero, then W=0
therefore,
W=F•ds
0=F•ds
0=(8.5i -8.5j)•(2.5i + cj)
Note that
i.i=j.j=k.k=1
i.j=j.i=k.i=i.k=j.k=k.j=0
So applying this
0=(8.5i -8.5j)•(2.5i + cj)
0= (8.5×2.5i.i + 8.5×ci.j -8.5×2.5j.i-8.5×cj.j)
0=21.25-8.5c
Therefore,
8.5c=21.25
c=21.25/8.5
c=2.5
F-free = m*g - F_air = m*a
F_air = 1.2 * m
a= (105 kg * 9.8 m.s^2 - 5*105) / 105 kg
a = 9.3 m/s
Hope this helps