Explanation:
Bond Enthalpy : It is defined as amount of energy required to break a the particular bond in there gaseous state. It is also known as bond energy. It units are kJ/mol.
- Breaking of a bond is an Endothermic process (energy absorbed from the surroundings).
- Formation of bond is an Exothermic process (energy is released to the surroundings).
If the average bond enthalpy for a C-H bond is 413 kJ/mol, When the C-H bond breaks in which energy will be required ,which will be an endothermic reaction.
Answer: A negatively-charged ion always has more electrons than protons
Explanation:
First, we know that the elementary negative charge is the electron, while the positive one is the proton. Such that both have the same charge in magnitude, but a different sign. Such that if we have the same number of electrons and protons in an atom, the charge of this atom will be neutral.
And an ion is an atom with a different number of electrons and protons, so the charge of the atom is not neutral.
Then if we have a negatively-charged ion, the charge of this atom is negative. Then we must have a larger number of electrons (the negative ones) than protons (the positive ones)
Then the correct option is:
A negatively-charged ion always has more electrons than protons
<span>Light can travel in a vacuum, and ... strange as it may seem ...
its speed is always the same, even if the light source is moving. </span>
Answer:
final displacement lf = 0.39 m
Explanation:
from change in momentum equation:
![\delta p = m \sqrt(2g * y/x)* [\sqrt li + \sqrt lf]](https://tex.z-dn.net/?f=%5Cdelta%20p%20%3D%20m%20%5Csqrt%282g%20%2A%20y%2Fx%29%2A%20%5B%5Csqrt%20li%20%2B%20%5Csqrt%20lf%5D)
given: m = 0.4kg, y/x = 19/85, li = 1.9 m,
\delta p = 1.27 kg*m/s.
putting all value to get the final displacement value
![1.27 = 0.4\sqrt(2*9.81 *(19/85))* [\sqrt 1.9 + \sqrt lf]](https://tex.z-dn.net/?f=1.27%20%3D%200.4%5Csqrt%282%2A9.81%20%2A%2819%2F85%29%29%2A%20%5B%5Csqrt%201.9%20%2B%20%5Csqrt%20lf%5D)
final displacement lf = 0.39 m