Hope this helps a little
initial distance up = 2
initial velocity component up = 9 sin 60 = 7.79
v = 9 sin 60 - 9.8 t
when v = 0, we are there
9.8 t = 7.79
t = .795 seconds to top
h = 2 + 7.79(.795) - 4.9(.795^2)
Height (y) = 36t - 16t^2, where t = time in seconds (s).
Our height (y) after 1s = 36(1) - 16(1)^2
y = 36 - 16 = 20 ft
So it reached a height of 20 ft during that 1 second, which means that at that 1 second it had a velocity of 20ft/s, since v = d(distance)/t = 20ft/1s
Answer:
70 m.
Explanation:
Given,
Frequency, f = 20 HZ
speed of sound, v = 1400 m/s
wavelength of the waves = ?
we know,
v = f λ



Hence, the wavelength of the wave is equal to 70 m.
From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.
Answer:
20min = 20 × 60 = 1200sec.
Speed in m per sec.
V = 1000/1200
V = 0.833m per sec.
Explanation: