im not sure which one to answer, and i can hardly see the text.
Answer:
1188.0 mL.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>V₁T₂ = V₂T₁
</em>
V₁ = 900 mL, T₁ = 27.0°C + 273 = 300.0 K.
V₂ = ??? mL, T₂ = 123.0°C + 273 = 396.0 K.
<em>∴ V₂ = V₁T₂/T₁ </em>= (900 mL)(396 K)/(300.0 K) = <em>1188.0 mL.</em>
pH solution = 8.89
<h3>Further explanation</h3>
Given
The concentration of HBr solution = 1.3 x 10⁻⁹ M
Required
the pH
Solution
HBr = strong acid
General formula for strong acid :
[H⁺]= a . M
a = amount of H⁺
M = molarity of solution
HBr⇒H⁺ + Br⁻⇒ amount of H⁺ = 1 so a=1
Input the value :
[H⁺] = 1 x 1.3 x 10⁻⁹
[H⁺] = 1.3 x 10⁻⁹
pH = - log [H⁺]
pH = 9 - log 1.3
pH = 8.89
Explanation:
The equation doesn't satisfy the Law of Conservation of Matter because There are more oxygen atoms after the reaction than there were before the reaction.
Therefore,
Option C is correct ✔
Answer:
In order to keep propane a liquid at room temperature (70° F or 21° C), it has to be held in a tank at a pressure of about 850 kPa. ... Household metal tanks cannot withstand this pressure. In short, natural gas is not stored in household tanks because the symmetry of its molecule makes it hard to liquify.