Answer:
The value of
for this reaction at 1200 K is 4.066.
Explanation:
Partial pressure of water vapor at equilibrium = 
Partial pressure of hydrogen gas at equilibrium = 
Total pressure of the system at equilibrium P = 36.3 Torr
Applying Dalton's law of partial pressure to determine the partial pressure of hydrogen gas at equilibrium:



The expression of
is given by:


The value of
for this reaction at 1200 K is 4.066.
Answer: the percent composition of carbon in heptane is 83.9%
Explanation:
<u>1) Atomic masses of the atoms:</u>
<u>2) Molar mass of heptane:</u>
- C₇H₁₆: 7 × 12.01 g/mol + 16×1.008 g/mol = 100.2 g/mol
<u>3) Mass of carbon in one mole of heptane:</u>
- C₇: 7 × 12.01 g/mol = 84.07 g/mol
<u>3) Percent composition of carbon:</u>
- % = (mass in grams of C) / (mass in grams of C₇H₁₆) × 100 =
= (84.07 g/ 100.2 g) × 100 = 83.9% ← answer
We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
Answer:
the direction of the object
Explanation: