Answer:
A. 79.3 keV
Explanation:
Because the procedure involves many steps for its resolution and it works faster on paper and pencil, the detailed solution of this exercise is attached as a scanned image of the procedure for review.
In the procedure, the initial values of the problem and the replacement of these values with the correct formulas for this process are taken into account.
Potential energy is a relative measure, so the answer is dependent on the assumptions we make. The potential energy in the car is going to be gravitational potential energy(PE). PE = mgh, where m is the mass, g is 9.8 m/s^2, and h is the height. So PE = 2000*9.8*h = 19600h. The final answer obviously depends on h. Most likely the problem is assuming that 30 meters under the top of the hill is considered 0 meters. Then h would be 30m and PE would equal 588 kJ.
Answer: mass for Pyrex glass 84.21g
mass for sand 61.6g
mass for ethanol 41.32g
mass for water 62.07g
Explanation
By definition specific heat is the amount of heat required to change the temperature of 1 kg mas by 1°C
Q=mcΔT is formula for specific heat
Q is heat transfer
m is mass
ΔT is change in temperature
c is specific heat
c of Pyrex glass= 0.75 j/g°C
c of sand = 0.84 j/g°C
c of ethanol= 2.42 j/g°C
c of water = 4.18 j/g°C
now we will make M(mass) the subject, so equation becomes
m=Q/cΔT
for
pyrex glass T<em>f=</em>55.4°C
m=1920/(55.4-25)*0.75
m=84.21g {after cutting J(joules) and °C we are left with g(grams)}
for
sand T<em>f</em>=62.1°C
m=1920/(62.1-25)*0.84
m=61.6g {after cutting J(joules) and °C we are left with g(grams)}
for
ethanol T<em>f</em>=44.2°C
m=1920/(44.2-25)*2.42
m=41.32g {after cutting J(joules) and °C we are left with g(grams)}
for
water T<em>f=</em>32.4°
m=1920/(32.4-25)*4.18
m=62.07g {after cutting J(joules) and °C we are left with g(grams)}
i hope you understand the solution, thank you.
The correct answer should be D. copper
Nickel, cobalt, and iron, produce magnetic fields when electrified while copper does not.
Answer:
The acceleration and time are 588 m/s² and 0.071 sec respectively.
Explanation:
Given that,
Speed = 42.0 m/s
Distance = 1.50 m
(a). We need to calculate the acceleration
Using equation of motion


Put the value in the equation


(b). We need to calculate the time
Using equation of motion




Hence, The acceleration and time are 588 m/s² and 0.071 sec respectively.