Answer:
patient receiving drug 25 MCG/minute
Explanation:
given data
infusing = 15 ml/hr
drug = 50 mg
D5W = 500 ml
to find out
How many MCG/minute
solution
we know infusing rate is 15 ml/hr = 0.25 ml/min
so 0.25 ml drug content = 50 /500 × 0.25
0.25 ml drug content = 0.025 mg
so here
rate of drug will be 0.025 mg
rate of drug = 0.025 mg = 25 ×
gm/min
rate of drug = 25 MCG/minute
so patient receiving drug 25 MCG/minute
Answer:
λ = 8.88 x 10⁻⁷ m = 888 nm
Explanation:
The energy band gap is given as:
Energy Gap = E = 1.4 eV
Converting this to Joules (J)
E = (1.4 eV)(1.6 x 10⁻¹⁹ J/1 eV)
E = 2.24 x 10⁻¹⁹ J
The energy required for photovoltaic generation is given as:
E = hc/λ
where,
h = Plank's Constant = 6.63 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = ?
Therefore,
2.24 x 10⁻¹⁹ J = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/λ
λ = (6.63 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(2.24 x 10⁻¹⁹ J)
<u>λ = 8.88 x 10⁻⁷ m = 888 nm</u>
Answer:
Number of turns on the secondary coil of the adapter transformer is 10.
Explanation:
For a transformer,

where
is the voltage induced in the secondary coil
is the voltage in the primary coil
is the number of turns of secondary coil
is the number of turns of primary coil
From the given question,
= 
⇒
= 
= 9.999733
∴
= 10 turns
Heat of combustion.<span> The calorific value is the total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions. The chemical reaction is typically a hydrocarbon or other organic molecule reacting with oxygen to form carbon dioxide and water and release heat.</span>
Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!