Answer:
4f E₄ = 0.85 eV, L₄ = 4.22 10⁻³⁴
,
5d E₅ = 0.544 eV
, L5 = 5.28 10⁻³⁴
Explanation:
Let's use the Bohr model, stable the energy of the hydrogen atom
E = -13.606 / n2
where Eo = 13.606 eV is the energy of the ground states.
a) the energy of each atom
level 4f
In this nomenclature enumeration is the number n
E = -13606 / 42
E₄ = 0.85 eV
level 5d
E₅ = -13.606 / 5 2
E₅ = 0.544 eV
b) The angular momentum is given in Boh's model
L = n h / 2pi
let's calculate
level 4f L₄ = 4 6.63 10⁻³⁴-34 / 2 pi
L₄ = 4.22 10⁻³⁴
level 4d
L5 = 5 6.63 10-⁻³⁴ / 2pi
L5 = 5.28 10⁻³⁴
c) The hydrogen atom in state n = 5 has lower energy than the other state
d) Atom 1 has less angular momentum than atom 2
D. 5 m/s
This is because the formula to find the speed of a wave is the wavelength divided by the period (wavelength/period). Since the wavelength is 100 m and the period is 20 s, the speed is 5 m/s.
If you are confused on the units, then think about it this way: If you put this problem in fraction form, it would be: 100 m/20 s. 100 divided by 20 is 5, but m and s are still there. Remember that this "/" is also a division symbol. Therefore, the unit will be m/s
Answer:
a. The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. -9.19° = 350.81° from the the positive x-axis
Explanation:
The initial velocity v₁ of the fish is v₁ = 4.00i + 1.00j m/s. Its final velocity after accelerating for t = 19.0 s is v₂ = 17.0i - 1.00j m/s
a. The acceleration a = (v₂ - v₁)/t = [17.0i - 1.00j - (4.00i + 1.00j)]/19 = [(17.0 -4.0)i - (-1.0 -1.0)j]/19 = (13.0i - 2.0j)/19 = 0.68i - 0.11j m/s²
The horizontal component of acceleration a₁ = 0.68 m/s²
The vertical component of acceleration a₂ = -0.11 m/s²
b. The direction of the acceleration relative to the unit vector i,
tanθ = a₂/a₁ = -0.11/0.68 = -0.1618
θ = tan⁻¹(-0.1618) = -9.19° ⇒ 360 + (-9.19) = 350.81° from the the positive x-axis
Answer:
D) 21
Explanation:
When gas absorbs light , electron at lower level jumps to higher level .
and the difference of energy of orbital is equal to energy of radiation absorbed.
Here energy absorbed is equivalent to wavelength of 91.63 nm
In terms of its energy in eV , its energy content is eual to
1243.5 / 91.63 = 13.57 eV. This represents the difference the energy of orbit .
Electron is lying in lowest or first level ie n = 1.
Energy of first level
= - 13.6 / 1² = - 13.6 eV.
Energy of n th level = - 13.6 / n². Let in this level electron has been excited
Difference of energy
= 13.6 - 13.6 / n² = 13.57 ( energy of absorbed radiation)
13.6 / n² = 13.6 - 13.57 = .03
n² = 13.6 / .03 = 453
n = 21 ( approx )